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Single particle analysis integrated with microscopy: A high-throughput
approach for reconstructing icosahedral particles

Xiaodong Yan a,1, Giovanni Cardone a,1, Xing Zhang c, Z. Hong Zhou c, Timothy S. Baker a,b,⇑
a Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA 92093-0378, United States
b Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0378, United States
c Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095-7364, United States

a r t i c l e i n f o

Article history:
Received 23 December 2013
Received in revised form 22 February 2014
Accepted 25 February 2014
Available online 5 March 2014

Keywords:
Cryo-electron microscopy
Image processing
Single particle analysis
Icosahedral particles
3D reconstruction
Automation

a b s t r a c t

In cryo-electron microscopy and single particle analysis, data acquisition and image processing are gen-
erally carried out in sequential steps and computation of a three-dimensional reconstruction only begins
once all the micrographs have been acquired. We are developing an integrated system for processing
images of icosahedral particles during microscopy to provide reconstructed density maps in real-time
at the highest possible resolution. The system is designed as a combination of pipelines to run in parallel
on a computer cluster and analyzes micrographs as they are acquired, handling automatically all the
processing steps from defocus estimation and particle picking to origin/orientation determination. An
ab initio model is determined independently from the first micrographs collected, and new models are
generated as more particles become available. As a proof of concept, we simulated data acquisition ses-
sions using three sets of micrographs of good to excellent quality that were previously recorded from dif-
ferent icosahedral viruses. Results show that the processing of single micrographs can keep pace with an
acquisition rate of about two images per minute. The reconstructed density map improves steadily dur-
ing the image acquisition phase and its quality at the end of data collection is only moderately inferior to
that obtained by expert users who processed semi-automatically all the micrographs after the acquisi-
tion. The current prototype demonstrates the advantages of integrating three-dimensional image pro-
cessing with microscopy, which include an ability to monitor acquisition in terms of the final structure
and to predict how much data and microscope resources are needed to achieve a desired resolution.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Cryo-electron microscopy (cryo-EM), in combination with
three-dimensional (3D) image processing techniques, is progres-
sively becoming a reliable and efficient tool for determining the
structures of biological macromolecular complexes. This is largely
attributed to steady advancements in instrumentation and soft-
ware (Chang et al., 2012; Glaeser and Hall, 2011; Grigorieff and
Harrison, 2011; Zhou, 2011). The most recent technological break-
through is the development of direct detection device (DDD) cam-
eras whose performance at least matches and can even exceed that
of traditional photographic film (Bammes et al., 2012; Campbell
et al., 2012), thus surpassing the need for manual and lengthy

digitization procedures. Furthermore, several software systems
are now available to collect data automatically at the microscope
such that thousands of images can now be acquired with minimal
user intervention during a continuous session of up to several days
(Korinek et al., 2011; Lei and Frank, 2005; Shi et al., 2008; Suloway
et al., 2005). DDDs and automated acquisition software naturally
combine to produce high-throughput systems that facilitate
obtaining large numbers of particle images and therefore targeting
high-resolution structures by single particle analysis. With these
advances, the current limitation for analyzing such a potential
plethora of data in a high-throughput manner lies with the deter-
mination of a 3D structure from the acquired images. This process
involves several procedural steps, which include screening ac-
quired images by their quality, estimating the defocus imposed
at the microscope, locating and extracting particles from the
images, determining their orientation and origin with respect to
a common reference system, and calculating a 3D reconstruction
from an optimal subset of particles. All these processing steps have
been extensively analyzed and different methods have been

http://dx.doi.org/10.1016/j.jsb.2014.02.016
1047-8477/� 2014 Elsevier Inc. All rights reserved.

⇑ Corresponding author at: Department of Chemistry & Biochemistry and
Division of Biological Sciences, University of California, San Diego, 9500 Gilman
Drive, MC-0378, La Jolla, CA 92093-0378, United States. Fax: +1 (858) 534 5846.

E-mail address: tsb@ucsd.edu (T.S. Baker).
1 Authors contributed equally.

Journal of Structural Biology 186 (2014) 8–18

Contents lists available at ScienceDirect

Journal of Structural Biology

journal homepage: www.elsevier .com/ locate/y jsbi



Author's personal copy

proposed to automate some of them (e.g. see (Lyumkis et al., 2010)
for a review).

Recent work has shown that high-resolution reconstructions
can be obtained rapidly by combining all the necessary steps in
an efficient way into a single pipeline (Sorzano et al., 2013). How-
ever, some level of user intervention is still required to adapt some
of the individual computational procedures to the specific proper-
ties of each data set. Such intervention thwarts the implementa-
tion of an integrated approach that streamlines data analysis, and
this generally forces most researchers to wait and only process the
images after all microscopy is done. Consequently, 3D reconstruc-
tions are usually obtained only in days or weeks after acquisition is
finished, with the total time required depending on the size of the
data set and the computational resources available. This delay in
the outcome of the experiments represents a critical bottleneck
not only for high-throughput analysis, but also for validation of
the experiments themselves.

Here, we explore the concept of integrating 3D image
reconstruction with microscopy as a means to overcome these lim-
itations. Specifically, we study the feasibility of a real-time, high-
throughput, automated processing system that analyzes electron
micrographs of icosahedral particles as soon as they are acquired
at the microscope and integrates the results into a 3D reconstruc-
tion. The task of such a system is designed to provide the micros-
copist during a data collection session an electron density map that
is regularly updated as more micrographs are recorded. For the
purpose of this analysis, we have implemented a software proto-
type that gathers the processing steps that are fundamental to sin-
gle particle analysis into a combined group of unsupervised
processing pipelines running on multiple processors. The approach
is similar to what we have recently proposed to generate a 3D
reconstruction from particles located in a single electron micro-
graph. In that case, the goal was to obtain low resolution, 3D struc-
tural information from one micrograph and perform an initial
evaluation of the sample. On the contrary, the current system we
describe below aims at determining a final, single structure at
high-resolution by integrating the information from all currently
available micrographs. We present a strategy that we have imple-
mented, and the algorithms selected to perform each step, to pro-
cess in real-time images acquired at the microscope. We also
report results based on simulated tests with three experimental
data sets to demonstrate the potential of such an approach. Finally,
we discuss the advantages of integrating image analysis with
microscopy and the limitations of the current implementation.

2. Implementation

Our goal in this study was to verify how feasible it is to generate
3D reconstructions during a data acquisition campaign at the
microscope, using the micrographs as soon as they are recorded.
For this purpose, the software package Auto3DEM (Yan et al.,
2007a) provides most of the basic functionalities needed, but with-
out them being fully automated. For example initial preprocessing
of the micrographs (CTF estimation, particle picking, and extrac-
tion) is performed manually. Also, the ab initio determination of
the initial model and the iterative procedure for alignment and
3D reconstruction are only partially automated and therefore re-
quire decisions from the user at different steps of the analysis.
Therefore, we have currently developed a prototype software pack-
age written in Perl language that monitors the status of the acqui-
sition and oversees the entire processing scheme, which is mostly
performed by components of Auto3DEM. The program, though still
at the prototype stage of development, implements the basic func-
tionalities of a workflow manager, adapted to our needs. Indeed, it
monitors the availability of new input images, schedules tasks for

each computing step according to the resources available, verifies
correct execution of tasks, and includes feedback control loops to
adjust the input parameters of the computational step on the basis
of how the reconstruction results progress. A detailed description
of the workflow is provided in Supplemental Material and
Fig. S1. Most of the tasks are distributed among multiple proces-
sors and exploit the MPI parallelism paradigm adopted by Auto3-
DEM, with the exception of the Contrast Transfer Function (CTF)
estimation, which is performed by the CTFFIND3 (Mindell and
Grigorieff, 2003) program that uses OpenMP. All the tasks running
at any time during the processing are launched on a computer clus-
ter through the PBS/TORQUE resource manager (Staples, 2006).

3. Experimental data sets

The approach we describe here was tested on three available,
minimal-dose cryo-EM data sets that were previously processed
in a semi-automatic manner by an expert user, and the resulting
reconstructions were used for comparison. One data set consisted
of 258 micrographs of grass carp reovirus (GCRV) (Zhang et al.,
2010), as originally selected from the entire set according to the
quality of their Fourier transforms. This data set was mostly in-
cluded to evaluate the importance of rigorous micrograph screen-
ing. The cryo-images were recorded on Kodak SO-163 film in an FEI
Titan Krios electron microscope operating at 300 kV and later dig-
itized with a Nikon Coolscan 9000ED microdensitometer to a nom-
inal pixel size of 1.075 Å. For the purpose of comparing the results
from the current approach with those previously published, we
used the calibrated pixel size of 1.1 Å to calculate the final resolu-
tion. A second data set included 4276 images of bacteriophage P22
(Lander et al., 2006; Tang et al., 2011) recorded on a Tietz 4kx4k
CCD camera at a nominal pixel size of 1 Å in an FEI F20 Tecnai elec-
tron microscope operating at 200 kV, using the Leginon automated
data collection system (Suloway et al., 2005). Additional details
concerning these two data sets are available in the cited literature.
A third, unpublished data set consisted of 2020 cryo-EM images of
phage CUS-3 recorded on a Direct Electron DE12 4kx3k DDD cam-
era at a nominal pixel size of 1.359 Å in an FEI Polara Tecnai elec-
tron microscope operating at 200 kV, using Leginon. Each DDD
micrograph was obtained by discarding the first two recorded
frames and combining the next fifteen. A drift correction algorithm
was applied to the individual frames to align and then sum them
together (Shigematsu and Sigworth, 2013). The numbers of parti-
cles extracted, either manually or automatically, from the micro-
graphs in all three data sets are reported in Table 1. The two
reconstructions obtained from each data set, one by a manual
and the other by the automated approach, were compared by vi-
sual inspection and by calculation of the Fourier Shell Correlation,
using the 0.5 cutoff criterion (van Heel and Schatz, 2005).

4. Test procedure

The acquisition of images at the microscope was simulated by
regularly transferring single micrographs in a data set to a defined

Table 1
Acquisition results: particles extracted.

No. of micrographs No. of particles

High-throughput Manuala

P22 4276 39,345 21,645 (2888)
CUS-3 2020 40,858 7766 (419)
GCRV 258 15,778 20,473 (247)

a The particles were extracted from a subset of the micrographs, which is indi-
cated in parentheses.
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file directory. In order to mimic the delay between successive im-
age acquisition events, the interval time was fixed to 30 s for the
P22 and CUS-3 data sets. Since the GCRV data set consisted of dig-
itized micrographs with a linear size exceeding 8000 pixels, in this
test the interval was set to 2 min. In all three instances, the simu-
lated acquisition intervals represent realistic, albeit stringent, con-
ditions of automated data collection on a well-aligned, stable
microscope. All the simulated tests were performed on a dedicated
Linux cluster composed of one front node and five compute nodes.
Each node was equipped with two, 4-core, 8-thread, 2.67 GHz, In-
tel Xeon X5550 processors, and between 36 and 48 GB of memory.
The Auto3DEM executables were generated with the compiler GCC
4.4.6 and relied on the openMPI library for parallelism. The number
of processors used at each time of the processing depended on the
amount of tasks being performed simultaneously, but by design it
never exceeded 53 processors.

5. Results

5.1. A data-driven pipeline approach

In single particle analysis, a 3D reconstruction is the result of a
sequence of processing steps that is applied to all images acquired
at the microscope. The design of a high-throughput system inte-
grated with the microscopy requires that these same steps be ap-
plied to each image independently, without any user
intervention. Additionally, the system has to keep up with the
micrograph acquisition rate at the microscope to avoid any delay
or accumulation of unprocessed data. As a further complication,
the origin and orientation parameters of each particle are com-
monly determined by using projection matching algorithms, which
work in an iterative fashion since the accuracy of the alignments
depend on the quality of the reference map, and vice versa. This as-
pect becomes even more critical in a high-throughput system be-
cause, initially the reference map is generated from the particles
available in the few micrographs acquired thus far, and it is ex-
pected to improve rapidly as more images are acquired. As a sim-
plified but optimal approach to satisfy these requirements, we
implemented the system as a set of computational, asynchronous
pipelines, i.e. chains of processing tasks arranged so that the output
of each task is the input of the next (Fig. 1).

In a pipeline, the results of each task (either images or parame-
ter files) are stored in a separate directory and a master program
monitors these directories cyclically. As soon as new input data
are available and the processing of the previous data is completed,
the master program assigns a new job to the task. The use of pipe-
lines permits optimization of the computational resources as-
signed to each task and allows all of them to be executed in
parallel. This assumes that enough resources are available, with a
minimum being one processor per task. As an additional advan-
tage, this approach simplifies the synchronization between the
sequential tasks to be performed, since the directories implicitly
provide a buffer system. The entire processing is divided into
two concatenated and independent pipelines, each one complying
with different requirements. Both pipelines run in an unsupervised
manner with the settings for each task being determined adap-
tively from the data. Before starting the system, the user needs
to input only a few parameters: the microscope settings (voltage,
spherical aberration coefficient of the objective lens, pixel size,
and amplitude contrast), the diameter of the particle, and the name
of the directory into which the acquisition system will store the
micrograph data.

A first pipeline (Pipeline 1) reads each micrograph as soon as it
is acquired and ultimately outputs a stack of particle images and a
parameter file. The parameter file contains a specification of the
defocus level, origin, and orientation of each particle, as deter-
mined by projection matching against the best reconstruction
available at that time. A similar pipeline is executed one time at
the beginning, on the very first micrographs acquired, to determine
an initial template by the Random Model Computation method
(Yan et al., 2007b). In order to speed up the computation without
losing too much accuracy in the alignment, all the processing in
Pipeline 1 is performed on the images after down-sampling them
by a factor of two. A second, iterative pipeline (Pipeline 2) reads
all the particle images output from the first pipeline, generates
an updated reconstruction, and refines the orientation of each par-
ticle image against the new density map. Using this approach, we
separate the slowest and most variable part of the processing
(Pipeline 2) from the more constant processing of single micro-
graphs and initial alignment of the particles extracted from that
micrograph (Pipeline 1). In Pipeline 1, the latency (time required
to obtain a set of aligned particles from a micrograph) is given by
the sum of the time required for each task, whereas the throughput

Fig.1. Data-driven, pipeline approach for real-time, high-resolution 3D reconstruction. The workflow highlights the two pipelines that the approach includes, and the major
computational steps in each. Pipeline 1 processes micrographs separately, immediately after each is recorded, to compile a stack of particle images and determine their
origin/orientation parameters. Pipeline 2, running in parallel with Pipeline 1, continuously updates the reconstruction and refines the origin and orientation parameters for all
particles currently available, in an iterative manner.
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rate (number of micrographs processed per time unit) is given by
the slowest task in the pipeline. This means that, as long as the
average processing time for the slowest task is comparable to or
less than the average time between two acquisitions, the system
can guarantee a throughput in line with the acquisition rate, thus
avoiding any accumulation of micrographs. The results on experi-
mental data show (see Section 5.4) that, in practical applications,
assigning moderate computing resources to each task can easily
satisfy this constraint.

In Pipeline 1, the basic tasks, each consisting of one or more pro-
cessing steps, are: CTF determination; particle picking and extrac-
tion; normalization of particle images; centering; global
alignment; and origin/orientation refinement (hereafter simply re-
ferred to as ‘‘refinement’’). All these tasks are applied sequentially
to each single micrograph and most are common to any conven-
tional single particle analysis workflow. The task of centering,
which refers to refining the location of the center of each particle
in its box window before determining the orientation of the parti-
cle, is here required because the automatic picking procedure
(Boier Martin et al., 1997) does not provide 1-pixel accuracy. The
centering operation is implemented by performing a global search
of the origin/orientation parameters by projection matching, and
using the determined origin shift values to adjust the boxing coor-
dinates and to re-extract the particles. Global alignment and
refinement refer to the determination of the alignment parameters
on coarse and local parameter grids, respectively, where the local
grid is centered around the solution determined on the global
one. All parameters are adaptively determined based on the quality
(i.e. estimated resolution limit) of the reference map and the size of
the particle (Cardone et al., 2013; Yan et al., 2007a).

Pipeline 2 applies to all the particles available at any time and is
composed of just two tasks: map reconstruction and origin/orien-
tation refinement. This pipeline is applied in a cyclic manner be-
cause the entire procedure is iterative. In this respect, it is
equivalent to any iterative, projection-matching-based approach,
with the main differences being that all settings are automatically
determined and, at every iteration, the number of input particles
increases with the acquisition of new images. In the current imple-
mentation, the computational resources are assigned statically to
each task of the two pipelines, with most of them running on mul-
tiple processors. In Pipeline 1, the numbers of CPUs assigned spe-
cifically for each task are as follows: CTF determination, 2;
particle picking and extraction, and normalization of particle
images, 1; centering, 10; global alignment, 8; refinement, 16. In
Pipeline 2, 16 CPUs are assigned to the map computation and par-
ticle origin/orientation refinement tasks.

5.2. Tests on experimental data sets

We tested our processing approach on experimental data sets to
verify its ability to provide high resolution reconstructions in an
automated and high-throughput manner. For this proof of concept,
we used data that had been previously processed in a semi-
automatic manner by expert users who obtained sub-nanometer
resolution density maps. Specifically, we selected three sets of
micrographs because of their good to excellent quality and because
they were recorded on different media. These included images of
unstained, vitrified samples of GCRV (Zhang et al., 2010) and bac-
teriophages P22 (Tang et al., 2011) and CUS-3 (Parent et al., unpub-
lished). For tests with GCRV, we limited the analysis to only those
micrographs actually used for the published reconstruction (258
out of 650). We included this reduced data set for the specific pur-
pose of testing the high-throughput approach under ideal condi-
tions of uniform, high quality images. For all tests, we simulated
that the microscope acquired images at regular time intervals by
copying the micrographs to a pre-defined directory at fixed delays.

We performed the tests under ‘‘stress’’ conditions by setting the
interval time to a nominal value of 30 s, which can be challenging
to achieve with most current microscopes and data acquisition sys-
tems. Since the images for GCRV were recorded on photographic
film and thus covered larger field of views than would be obtained
from all currently available digital cameras, for this specific data
set we set the simulated acquisition interval to 2 min. From these
simulations, we were able to gather information about the capabil-
ities and the limitations of the proposed high-throughput process-
ing system. The reconstructions obtained automatically at the end
of the simulated acquisition job were compared with those ob-
tained manually by expert users to verify the existing gap between
manual, post-acquisition processing and automated analysis dur-
ing data acquisition.

5.3. Generation of initial model

At the beginning of a data acquisition job, no reference model is
available for determining the origin shifts and orientation angles of
the particles in the micrographs. Therefore, the first task of the sys-
tem is to generate an ab initio model from the initial micrographs
acquired, as soon as there are enough particles to successfully em-
ploy the Random Model Computation method (Yan et al., 2007b).
This step introduces an initial delay that results in an accumulation
of micrographs that require processing. In the simulations with the
P22, CUS-3, and GCRV data sets, there were delays of 34, 15, and
52 min, respectively (corresponding to 68, 30 and 26 micrographs).
Once an ab initio model was available, all the pending micrographs
were processed together via Pipeline 1, which took 4 (P22), 2 (CUS-
3), and 20 (GCRV) min to finish. After that, all subsequent micro-
graphs were treated independently.

5.4. High-throughput processing of single micrographs

One important requirement for a high-throughput, 3D recon-
struction system is to be able to process micrographs in a time
frame comparable to or faster than the acquisition rate. In our
tests, we determined that downsampling the input micrographs
by a factor of two and using 37 processors distributed among the
different processing steps enabled us to obtain a stack of particle
images from a micrograph along with a good estimate of the par-
ticle parameters in a time only slightly longer than the interval be-
tween successive acquisitions (<1 min for the P22 and CUS-3 data
and <3 min for the GCRV data). This timing represents pipeline la-
tency, i.e. an initial delay in the output after the very first micro-
graph is recorded, but it does not become a limiting factor in the
throughput capabilities of the pipeline. In fact, it is more important
that all processing steps in a pipeline perform their tasks before the
next image is recorded, as this avoids accumulation of unprocessed
images and a progressive increase in the original delay.

The first two processing steps in Pipeline 1, CTF determination
and particle picking, generally run in a time span that is indepen-
dent of the data set and, on average, take 10 and 1 s, respectively.
Timings for the other three processing steps in Pipeline 1 (center-
ing, global alignment, and refinement) are more variable (Fig. 2).
We note, however, that the mean throughput rate is faster than
the acquisition rate. In fact, the processing time per micrograph
of any task was always shorter than the time interval between suc-
cessive acquisitions except for a small percentage of the P22 micro-
graphs. For this data set, the centering step for 165 of the 4276
micrographs took more than 30 s, with a maximum of 46 s, and
the refinement of just five of the 4276 stacks of particles required
more than 30 s and a maximum of 37 s. Regardless, the mean pro-
cessing time was less than 20 s for each of these steps, and the en-
tire data processing scheme quickly recovered from any delays
caused by recalcitrant data. Variability in the processing times
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for different micrographs is partially caused by the number of par-
ticles extracted from each micrograph, and this is more pro-
nounced for the slower centering and refinement tasks and for
larger particles (GCRV, unpublished data). It is notable that the
centering and global alignment steps both perform coarse align-
ments of the particles using the same projection matching proce-
dure based on the Polar Fourier Transform algorithm (Baker and
Cheng, 1996). However, centering also involves re-boxing the par-
ticle images from the micrograph, and this operation contributes to
making this step slower than the global alignment. Regarding glo-
bal alignment, this step runs quickly for all the data sets, indicating
that fewer computational resources can be assigned to this pro-
cessing step without affecting overall performance.

5.5. Update of the 3D reconstruction

Since particles are extracted and their alignment parameters are
determined while micrographs are being acquired, the system can
generate a 3D reconstruction that is updated as new data become
available. The reconstruction computed from all particle images
available at any given moment is performed in Pipeline 2, which
also contains a step in which the orientation parameters are re-
fined provided the resolution of the map keeps improving. A new
Pipeline 2 processing cycle is triggered whenever new particles
are added (see Material and Methods). Consequently, during data
acquisition, map quality improves as a result of particles being
added to the data set and their origins/orientations being refined
(Fig. 3).

All three data sets exhibit resolution improvement as a function
of acquisition time that is primarily influenced by the correspond-
ing linear increase in the number of particle images recorded.

Additionally, the progress of the reconstruction reflects and con-
veys information about the quality of each data set. For example,
2 h after the simulated acquisition sessions began, a total of 3768
(CUS-3), 1740 (P22), and 4179 (GCRV) particle images were col-
lected and 3D density maps at 9.7, 9.4, and 6.3-Å resolution,
respectively, were available for inspection and analysis. Of note,
the number of particles included in any reconstruction is always
less than the number of particles acquired at that time for two rea-
sons: some particles are flagged as ‘bad’ according to the selection
mechanism and there is latency in the initial processing of the
micrographs. Moreover, an additional latency occurs owing to
the time that is required to generate a 3D reconstruction from
the set of selected particles. At the end of the acquisition session,
i.e. after the last micrograph was recorded, the estimated resolu-
tion limit of the reconstruction for each of the three data sets
was very close to the highest one attainable from the system,
which was achieved after three further iterations of refinement
(Table 2).

5.6. Comparison with reference results

Another important aspect in evaluating a high-throughput pro-
cessing system that is tightly coupled to microscopy is the extent
to which it can produce a final reconstruction that is comparable
to that obtained via alternative methods of processing. For this rea-
son, our tests were performed on data sets that were previously
processed by an experienced user in a supervised, semi-automatic
manner, as this provided a reliable reference map for comparison
purposes. As expected, experts invested considerable effort to
achieve the highest resolution possible for each set of image data.
In each instance, the expert conducted a preliminary screening of

Fig.2. Processing times of single micrographs. Histograms plot the times required to perform specific computational steps in Pipeline 1 during the simulated acquisitions for
each data set analyzed. Times are shown for the operations of centering (refinement of origin coordinates by projection matching and re-boxing of particles), global alignment
(search of orientation parameters on a coarse grid), and refinement (search of parameters centered about the values determined by the global alignment). For the P22 tests,
the vertical dashed line (blue) highlights the simulated acquisition time for these data (30 s), that is the time between an acquisition and the following one. For the other data
sets the acquisition times fall at the limit of (30 s for CUS-3) or beyond (120 s for GCRV) the range displayed. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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the micrographs according to the quality of their Fourier trans-
forms, and particle images were either picked manually (P22 and
CUS-3) or automatically (GCRV), followed by visual particle screen-
ing. Manual processing of the data sets took 2 (GCRV), 10 (P22),

and 6 (CUS-3) weeks to complete, and this does not include the
time it took to record the micrographs or, in the case of GCRV, to
develop the films. When comparing the resolutions of the two
reconstructions obtained from each data set by means of Fourier

Fig.3. Progress of the reconstruction during data acquisition. Bottom row: for each data set, the resolution of the reconstruction is plotted as a function of the time during the
simulated acquisition. Top row: as a reference, the total number of particles acquired (dashed line) and number used in the reconstruction (solid line) are plotted along the
same time scale. Vertical dashed lines (blue) indicate the time points when data acquisition ended, after which the system performed only a few iterations of refinement. Note
that some curves are plotted on different ordinate and abscissa scales. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Table 2
Acquisition results: quality of final reconstruction.

High-throughput Manual

No. of micrographs/particles Resolution (Å)a,b No. of micrographs/particles Resolution (Å)a

P22 3848/32,050 5.6 (6.1) 2888/18,602 5.4
CUS-3 1818/32,314 7.3 (7.5) 419/7766 6.8
GCRV 258/13,325 4.1 (4.4) 247/18,646 3.8

a The resolution is estimated by Fourier Shell Correlation using the cutoff 0.5 (van Heel and Schatz, 2005).
b The resolution achieved immediately at the end of the acquisition is indicated in parentheses.

Fig.4. Comparison of cryo-reconstructions obtained by an experienced user (‘‘manual’’) or by the high-throughput, real-time approach. Each panel shows a 1-pixel-thick,
density projection of a quadrant of an equatorial section from the corresponding, final cryo-reconstruction of the P22, CUS-3, and GCRV samples. All bars represent 10 nm.
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Shell Correlation (Table 2 and Supplemental Fig. S2), the map from
the automatic, high-throughput approach was quite close and only
of slightly lower quality to the one determined manually. The res-
olution discrepancy ranged between a low of 0.2 Å for P22 (5.6 Å
versus 5.4 Å) and a high of 0.5 Å for CUS-3 (7.3 Å versus 6.8 Å),
and these differences in resolution estimates were confirmed by vi-
sual analysis of the reconstructions (Figs. 4 and 5). For CUS-3, the
resolution difference between the two reconstructions is primarily
reconciled by the variability in quality of the input micrographs.
Indeed, many micrographs in this set were affected by severe spec-
imen drift, and only 419 of the 2020 micrographs were included in
the manual analysis. However, during the simulated acquisition, all
micrographs were analyzed and only 10% of them were rejected
based on the fitting score obtained by CTF estimation. As a compar-
ison, in the P22 data set the quality of the micrographs was more
homogenous, whereas in the GCRV simulation we used only the
micrographs that were previously scored ‘good’ by the user, and
in both cases the resolution difference between the maps obtained
automatically and manually was smaller.

6. Discussion and conclusions

In this study, we present results that demonstrate the feasibility
to develop, with currently available software and hardware, a high-
throughput computing framework that can process low-dose
electron micrographs of unstained, vitrified icosahedral particles
during data acquisition. Such a framework would be ideally used
in combination with an automated cryoEM data collection system
to streamline all the image analysis. For the purposes of this study,
we have implemented a proof-of-concept system to test the capa-
bilities and the limitations of an approach that has to satisfy the
strict constraints imposed by a real-time system, where processing
needs to keep pace with the acquisition rate at the microscope.
According to the proposed approach, micrographs are immediately
analyzed after they are recorded, particle images are extracted
from them and their alignment parameters are determined, and a
regularly updated 3D reconstruction is provided, with all steps per-
formed in a fully automated manner. Besides the microscope set-
tings, the only additional information required to start the

process is the diameter of the particle and specification of a file
directory for storing all the raw and processed data. To avoid tem-
plate-induced bias, an initial model is obtained from the first
micrographs acquired.

The results from simulated acquisition jobs demonstrate that it
is possible to obtain from each micrograph a stack of particles
properly aligned to a reference at the same rate at which images
are acquired. The simulations were performed under the assump-
tion of an acquisition rate of two images per minute, which is very
stringent for most current microscopes and data acquisition soft-
ware. While single micrographs are processed, a 3D map can be
generated in parallel using a select set of all the currently available
particles, so the microscopist gets frequent and nearly instant feed-
back about the quality of the reconstruction that can be achieved
from those data. Most important, when acquisition ends the cur-
rent version of the system provides a final reconstruction that, in
terms of quality, is only slightly inferior to what a user could
achieve manually and over a much longer time frame after all
the data are collected. The strategy adopted by us to achieve these
results relies on the use of two asynchronous pipelines to stream-
line and parallelize the processing, and requires a parallel comput-
ing platform to run.

The use of a pipeline to process single micrographs has two ma-
jor advantages. First, the system does not need to complete all the
processing by the time a new micrograph is collected, but only to
ensure that the slowest step keeps up with the acquisition rate.
Basically, this approach guarantees throughput at the expense of
latency. Second, the allocation of multiple processors can be opti-
mized among the different steps according to their individual com-
putational requirements. This is particularly important in single
particle analysis where there is large variability in the type of sam-
ples analyzed. Typically, the diameters of icosahedral virus parti-
cles range from �20 to 200 nm, and the number of them
included in each micrograph depends on the concentration of the
sample and generally includes just a few to hundreds of particles.
For each of the three test data sets in this study, we showed that
the relative computational load of the single processing steps can
be different (Fig. 2), and therefore it is desirable to be able to mod-
ulate the computing resources among those steps in order to
achieve an optimal balance. It is notable that the requirements

Fig.5. Comparison of results obtained by manual versus automatic, high-throughput approaches: surface renderings. Close-up views are shown of the outer surfaces of the
final reconstructions obtained for the P22 (left panels) and CUS-3 (center panels) data sets. For GCRV, a segmented rendering of VP4, one of the outer capsid proteins, is shown
in stereo overlapped with its atomic model (chain T of PDB model 3IYL).
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for a dedicated, parallel computing platform to implement this ap-
proach are not excessive. For our tests, we used five server nodes
from a cluster built in 2009, for a total of 53 processors statically
assigned to the different tasks. Further optimizations and newer
hardware can easily reduce these requirements and adapt the com-
puting resources to the given sample and acquisition settings. All
the knowledge acquired from the development of this proof of con-
cept and the feedback derived from the test cases analyzed are cur-
rently being used to implement a software system, called SPRINT
(Single Particle Reconstruction In No Time), that aims to contain
all the elements of robustness and flexibility that are necessary
for general use.

6.1. Advantages of a 3D microscope

The integration of image processing with microscopy has the
potential to transform an electron microscope into a true 3D
instrument, since the final output and even intermediate results
from an acquisition session would be a density map ready for anal-
ysis. In this way, analysis and interpretation of the structure can
start immediately after the end of the acquisition or even before
that. Our proof of concept with icosahedral viruses represents a
step forward in this direction and provides new and more efficient
means to explore the structures and functions of such viruses.

A high-throughput system like the one proposed here elimi-
nates any time lag between acquisition and 3D reconstruction,
thus providing instantaneous feedback about the sample and the
experimental settings, based on their ability to provide high-
resolution structures. For example, if the quality of the sample
was poor or suboptimal and unable to yield high-resolution struc-
tural data, this would become evident from the quality of the
resulting maps obtained while acquiring images at the microscope,
and the user would have the option to halt data collection and
thereby be spared the need for post processing. Similarly, if the res-
olution achieved at some time point suffices to answer the biolog-
ical question of interest, then no further acquisition would be
needed and the microscope would be immediately available to
examine other specimens.

We observed that the resolution potentially achieved from a
particular sample could be predicted along with the number of
particles required to achieve it. This capability is made possible gi-
ven that, during acquisition, several consecutive reconstructions
are generated, each one from a different but increasing number
of particles. Theoretical considerations have demonstrated a rela-
tionship between the number of particles included in a reconstruc-
tion and the resolution that can be achieved (Glaeser, 1999;
Rosenthal and Henderson, 2003), which also reflects the quality
of the images and the experimental settings. Experimental studies
(LeBarron et al., 2008; Liu et al., 2007) have verified this relation-
ship by comparing the resolution of reconstructions from different
subsets of particles in a data set, showing a linear behavior of
ln(Nd) versus 1/d2, where N is the number of particles and d is
the resolution achieved (FSC cutoff = 0.5). We observe a similar lin-
ear trend for our three data sets, using as data points the resolution
values of the intermediate reconstructions obtained during the
acquisition from the subset of particles collected thus far (Fig. 6).
From the slope of the line, an apparent B factor can be derived that
indicates the overall quality of the data and the accuracy of the
alignment. In our tests, the apparent B factor agrees with our
assessment of the quality of the data, with GCRV providing the
lowest value and CUS-3 the highest. To compare these results with
the previously published ones (LeBarron et al., 2008; Liu et al.,
2007), we repeated the plot for reconstructions obtained by ran-
domly selecting subsets of particles and using their final
orientation/origin parameters, as determined at the end of the
high-throughput processing. Again, the data follow a linear

behavior, with only P22 showing a noticeable difference (apparent
B factors: 396 versus 324 Å2) between the two plots (Fig. 6). This
general agreement between the two curves indicates that the ori-
gin and orientation determined for each particle immediately after
its parent micrograph was recorded already closely match those
eventually obtained after further cycles of refinement. Hence, the
two curves provide consistent information, and this means that,

Fig.6. Relationship between number of particles and resolution. Each panel shows a
plot for the tests with P22, CUS-3 and GCRV of the logarithm of the product
between resolution and number of particles as a function of the reciprocal of the
squared resolution. The points represented as circles (blue) were derived from the
reconstructions obtained during the acquisition session with just those particle
images available at particular times. The points represented as squares (green) were
obtained by randomly selecting subsets of particle images (in multiples of 1000)
from the entire data and estimating the resolution achieved by the reconstruction
generated from these particles, using the latest values determined for their origins
and orientations. The lines show linear fits to these points, and the apparent B factor
displayed is determined by dividing by half the slope coefficient of the line as
described (Rosenthal and Henderson, 2003). When acquisition begins, the quality of
the first few reconstructions is not high enough to provide accurate estimates of the
origin/orientation parameters of the particles extracted thus far, hence, the first
three (GCRV) or four (P22 and CUS-3) points (open circles) were excluded from the
linear fit analysis. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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at any point during the acquisition, one can obtain a reasonable
estimate of the number of particles required to achieve a higher
target resolution based on a calculation of the linear regression
of the curve generated so far. Consequently, the strategy and the
time dedicated to a single acquisition session could be adjusted
according to the specific needs of the project as determined by
the quality of the reconstruction obtained so far and the time re-
quired to obtain further improvements. Overall, these monitoring
and predictive capabilities of the system can prove to be quite use-
ful in optimizing the use of expensive, multi-user microscopy
resources.

6.2. Current challenges

6.2.1. 3D reconstruction
Our experiments have shown that it is possible to obtain

aligned stacks of particles in a time comparable with the data
acquisition. But, we have yet to achieve a complete, real-time sys-
tem that includes the 3D reconstruction. In fact, each time when
particles are added to the data set or their origins/orientations
are refined, the latest 3D density map is discarded and the recon-
struction algorithm is relaunched to compute a new map using
all the available, updated information. In this regard, the recon-
struction is a monolithic process, and even if only one new particle
contributes to the map, all particles must be reprocessed. Conse-
quently, while data are being acquired, the time needed to com-
pute a 3D reconstruction increases with the size of the data set
(Supplemental Fig. S3). For example, with the P22 data, only when
there are fewer than 2000 particle images, reconstructions can be
computed in less than 30 s and therefore in less time than that re-
quired to record a new micrograph. Reconstruction computation
becomes even more costly as resolution improves and reaches
the point where unbinned rather than binned particle images are
used. This is dramatically true for large particles like GCRV, in
which case only one processor could be used for generating the
reconstructions, and towards the end of the acquisition session
each reconstruction (�13,000 particles) takes �55 min to compute.
A complete, real-time processing system will be possible only after
this reconstruction-calculation bottleneck is overcome. As ex-
plained above, though some advantages can be derived by mini-
mizing the number of reconstructions to be performed, a
comprehensive solution will require the development of novel
algorithms.

6.2.2. Particle picking
All the different processing steps that comprise the proposed

high-throughput system are based on software implementations
(i.e. Auto3DEM and CTFFIND) that have been extensively tested
and optimized by us and others. Except for the particle-picking
procedure, the steps are all general in their applicability and robust
under most common, practical situations. Location of particles in
the micrographs is performed with an algorithm (Boier Martin
et al., 1997) that provides satisfactory results with data sets of
overall good quality, like the ones we used for testing, and is
mostly suited for quasi-spherical particles. The performance of this
algorithm is well documented in our previous analysis of a system
for rapid reconstruction of 3D models from single micrographs
(Cardone et al., 2013). In the current experiments we observed that
the percentages of outliers and particles missed by the algorithm
for the P22 and CUS-3 data sets were around 15% and 5%, respec-
tively, which is consistent with previous results for micrographs
of good quality. The number of particles missed in the GCRV data
set was about 20%, and this is higher than in the other two sets be-
cause the GCRV sample was highly concentrated in the fields of
view captured in the micrographs, and the algorithm excluded
many particles in close contact with each other. Particle picking

is a critical step in a successful implementation of a real-time
processing system, especially because the accuracy of the method
poses a major limit to the resolution that can be achieved in the fi-
nal reconstruction. To our knowledge, there are no unsupervised,
particle-picking algorithms that can handle any sample quality
condition in an automatic manner. A possible solution could come
from employing several automatic picking methods simulta-
neously, and integrating their results by means of a consensus
algorithm. Furthermore, picked particles could be screened by
quality using a combination of descriptors as recently proposed
(Vargas et al., 2013).

6.2.3. Quality control
A robust, automated processing system, in addition to being

able to locate particles accurately in the micrographs, must screen
the micrographs according to their quality. In a data set obtained
with an automated acquisition system, it is typical to generate data
sets with a significant fraction of images of suboptimal quality for a
variety of reasons (e.g. as caused by large ice thickness, specimen
heterogeneity and drift, high astigmatism, etc.). In the current
experiments, we automatically excluded from the reconstruction
all particles originating from micrographs whose fit correlation,
as measured by the CTF estimation procedure, was lower than a
fixed percentile. This metric, however, only accounts in a generic
manner for micrograph quality, and more accurate measures are
needed that can adapt to disparate experimental conditions. The
difference in the quality of reconstructions obtained from the
CUS-3 data using a manual versus a high-throughput approach
clearly demonstrated that removal of inferior micrographs, along
with a careful selection of particles, is pivotal for attaining the
highest possible resolution from the data. In conjunction with
quality indicators designed to aid the process of automatically
screening micrographs and particles according to their influence
in improving resolution in the reconstructed maps, there is a crit-
ical need in automated systems to include tools to validate the
reconstructions themselves in a manner that surpasses simple res-
olution assessment (Henderson et al., 2012). Because of the intrin-
sic low signal-to-noise ratio of input micrographs, noise can
adversely affect determination of particle alignment parameters
and lead to sub-optimal 3D maps and an over-estimate of the res-
olution achieved (Stewart and Grigorieff, 2004). Our current soft-
ware prototype implements a frequency-limited refinement
approach (Scheres and Chen, 2012) that minimizes the risk of over-
fitting (Li et al., 2013). However, a more complete and robust solu-
tion will require the additional use of gold-standard refinement
procedures (Scheres and Chen, 2012), which guarantee correct
estimation of the resolution, and possibly other validation tools
that monitor influence of noise in the reconstruction during the
acquisition process.

6.2.4. Recording on direct electron detector cameras
The use of such devices is becoming a de facto standard to

achieve reconstructions at near-atomic resolution with relatively
low numbers of particles (Bammes et al., 2012; Campbell et al.,
2012). In part, this is a consequence of their high frame rate and
hence their ability to generate ‘movies’ that record beam-induced
particle movements, allowing dedicated image processing proce-
dures to compensate for particle image blurring by combining
the information from properly aligned frames. This frame align-
ment and averaging procedure would be the first operation to be
performed after acquisition and, in a system like the one proposed
here, would correspond to the first task in Pipeline 1. Efficient solu-
tions to accomplish this are available that run on graphic process-
ing units capable of processing one set of frames in times that are
potentially quicker than the rate of acquiring micrographs (Li et al.,
2013). However, these solutions will need to be integrated with
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algorithms that determine the optimal subset of frames to average,
in order to maximize the high resolution frequency content.

6.3. Extension to asymmetric particles

The approach we propose here has been implemented specifi-
cally for particles with icosahedral symmetry, but most processing
components of the system do not require such high particle sym-
metry to work. For example, Pipeline 2, which performs the recon-
struction and iteratively refines the alignment parameters, can
already process particles with reduced or no symmetry. On the
contrary, some modifications would be required in Pipeline 1,
which processes each micrograph separately. Specifically, the two
computing steps that need modification and currently represent
a challenge in processing images of asymmetric particles in a
high-throughput manner are particle-picking and determination
of an ab initio model. A universal procedure capable of locating par-
ticles in a micrograph, automatically and without supervision, still
poses a significant challenge despite numerous efforts (Potter et al.,
2004). The problem is currently further exacerbated with small
(<500 kDa) molecular complexes that are difficult to discriminate
in noisy, low-dose cryo-images. Successful results have been ob-
tained by combining picking algorithms with multiple layers of
classification (e.g. (Lyumkis et al., 2013)), but such approaches still
rely on lengthy, manual user intervention.

Another major obstacle is being able to compute rapidly a
reliable, ab initio model from the data. Recently, probabilistic ap-
proaches to tackle this problem (Elmlund et al., 2013; Sanz-García
et al., 2010) show promise but require more extensive experimen-
tal analysis. Furthermore, regarding asymmetric particles, sample
heterogeneity is more a norm rather than an exception, since par-
ticles may adopt a variety of different conformations or their com-
ponents are incorporated with different stoichiometries (e.g. see
(Fernández et al., 2013) where one structure was obtained from
less than 3% of the full data set of images). This situation makes
mandatory the introduction of an additional computational step
that classifies the particles and segregates them among different
models. Given these additional difficulties, the validation of 3D
reconstructed maps is a sensitive issue and one that should be al-
ways be addressed (Henderson et al., 2012), and is especially crit-
ical for an automated system. Nevertheless, technological advances
will make real time, 3D microscopy feasible in the foreseeable
future.
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