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Single particle analysis is a valuable tool in cryo-electron microscopy for determining the structure of bio-
logical complexes. However, the conformational state and the preparation of the sample are factors that
play a critical role in the ultimate attainable resolution. In some cases extensive analysis at the micro-
scope of a sample under different conditions is required to derive the optimal acquisition conditions. Cur-
rently this analysis is limited to raw micrographs, thus conveying only limited information on the
structure of the complex.

We are developing a computing system that generates a three-dimensional reconstruction from a sin-
gle micrograph acquired under cryogenic and low dose conditions, and containing particles with icosa-
hedral symmetry. The system provides the microscopist with immediate structural information from a
sample while it is in the microscope and during the preliminary acquisition stage. The system is designed
to run without user intervention on a multi-processor computing resource and integrates all the process-
ing steps required for the analysis. Tests performed on experimental data sets show that the probability
of obtaining a reliable reconstruction from one micrograph is primarily determined by the quality of the
sample, with success rates close to 100% when sample conditions are optimal, and decreasing to about
60% when conditions are sub-optimal. The time required to generate a reconstruction depends signifi-
cantly on the diameter of the particles, and in most instances takes about 1 min. The proposed approach
can provide valuable three-dimensional information, albeit at low resolution, on conformational states,
epitope binding, and stoichiometry of icosahedral multi-protein complexes.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Transmission electron microscopy (TEM), combined with image
analysis and three-dimensional (3D) image processing, is rapidly
evolving as a reliable and essential tool for structural biologists
to study the 3D structures of macromolecular complexes under
near native conditions (Frank, 2006). High-resolution models of
such complexes can be obtained by combining images of thou-
sands to upwards of millions of particles, after having determined
their orientations in the acquired images by single particle analysis
(Zhou, 2011). Technological advancements in the fabrication of
microscopes and detector devices enable the acquisition of high
quality micrographs at increased speed (e.g. Bammes et al., 2012;
Yu et al., 2011), and several software packages are available to
automate the acquisition process (e.g. Korinek et al., 2011;
Suloway et al., 2005).

Despite all this progress, the quality of the biological sample
and the way it is prepared for the microscopic analysis are still
the predominant factors that determine the ultimate resolution
achievable for the final structure (Jensen, 2010). As a first require-
ment the particles in the sample need to be intact and homoge-
neous, both in terms of protein composition and conformational
state, otherwise additional layers of processing are required to sep-
arate the different populations. When a complex is experimentally
bound to an additional component, such as viruses decorated with
fragment antibodies (Fabs), it is desirable to achieve stoichiometric
binding in order to optimize analysis of interactions between the
two. Furthermore, the preparation of a sample for cryo-electron
microscopy is a multi-step process in which each step must be en-
hanced for the biological complex under study. Therefore, the
preparation always requires some level of decision by the micros-
copist, and this will affect the quality of the reconstruction. Com-
position of the buffer, treatment applied to the support film of
the TEM grids, and the vitrification procedure are just three
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examples of factors that can require extensive trial and error
experimentation. Part of the analysis of a sample under different
preparation conditions is usually conducted at the microscope
and involves the acquisition of some images and their visual
inspection in two dimensions, using the imaging tools provided
by the acquisition software. However, evaluation based on the
analysis of 2D images provides only partial information about the
properties of the specimen (e.g. particle integrity and concentra-
tion, ice thickness, etc.) or the micrograph (e.g. the level of defocus
and astigmatism, presence of specimen drift or charging, etc.). As a
solution for the analysis of particles with icosahedral symmetry,
we have developed a system that takes images as they are acquired
at the microscope and processes them on a high-performance com-
puting platform. The goal is to provide the microscopist with
immediate 3D structural information about particles in a sample
while it is in the microscope and during the preliminary acquisi-
tion stage. Each successive micrograph is analyzed independently
and a 3D reconstruction is computed from the particles available
in that image within the time typically required to move the sam-
ple to a new field of view and to record the next image. To maxi-
mize the benefits of such a system to the microscopist, we have
designed it so that no user intervention is required other than to
establish an initial configuration, and this can be accomplished
quite easily and with very little training.

To our knowledge a similar approach has thus far been explored
with electron tomography (Zheng et al., 2007), where the goal is to
generate in an automated fashion a tomogram immediately after
an entire tilt series is acquired. Current computational efforts on
automation in single particle analysis mostly focus on single as-
pects of the entire processing procedure, with minimal efforts on
integration. For example, an area under active development in-
volves streamlining the acquisition procedure to optimize time at
the microscope while providing high-throughput data (Korinek
et al., 2011; Shi et al., 2008; Suloway et al., 2005). All the process-
ing steps required for obtaining a 3D reconstruction, such as parti-
cle picking, contrast transfer function (CTF) estimation, and
particle orientation determination have been extensively analyzed,
and methods proposed to automate each step have been described
(e.g. Adiga et al., 2005; Mallick et al., 2005; Ogura and Sato, 2004;
Vargas et al., 2013; Voss et al., 2009). However, an integrated ap-
proach for real time operation has yet to be demonstrated. Here
we present a system that we are developing that provides timely
3D feedback to the microscopist while the sample is inside the
microscope. We describe all of the components of our system
and demonstrate its performance on experimental micrographs
of icosahedrally-symmetric particles. Tests have been performed
on existing data sets, chosen as representative of different acquisi-
tion conditions.
Fig.1. Automated reconstruction workflow. The system continuously monitors if
micrographs are acquired, and new images are immediately added to the queue for
processing. The only input parameter required from the user at the beginning of the
procedure is the radius of the particle. Pre-processing involves making two copies of
the micrograph binned at different sizes and format conversion. These copies are
then processed in parallel to estimate the microscope CTF and to pick the particles
from the available field of view. Once the particle images are extracted and the
microscope acquisition parameters (astigmatism, defocus) are available, a set of ten
separate RMCs is launched. These models are iteratively refined in parallel, on
separate processors, and the final 3D reconstruction results are compared to select
the best reconstruction.
2. Approach

2.1. Overview and specifications

The general concept of a real-time 3D reconstruction at the
microscope protocol is to analyze a micrograph as soon as it is
acquired, with the goal of determining a reliable, albeit low resolu-
tion 3D reconstruction of the particles available in that micro-
graph. In this way the microscopist can get immediate visual
feedback about the structure of the sample while it is in the micro-
scope. The image processing procedures are designed to accelerate
and not interfere with the work of the microscopist, since all the
analysis is performed in an automated fashion with minimal user
intervention. Also, all the results from the analysis are visually
accessible, without any need to interact with the program unless
desired. The microscopist is expected to get the structural
information derived from one micrograph before acquiring the
next micrograph from a different area of the specimen. In general,
the time required to acquire manually two successive micrographs
from different regions of a vitrified sample takes at least a minute
or two, which depends on sample conditions (e.g. particle concen-
tration and ice thickness) and microscope configuration.
2.2. Workflow

A sequential set of processing steps must be performed to gen-
erate a 3D reconstruction from a set of particles imaged in a micro-
graph (Fig. 1). These steps are common to those needed during
single particle analysis of an entire data set of images, with the
exception that only one micrograph is analyzed in this case.
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The images acquired at the microscope are stored in a file direc-
tory, usually defined by the user, on a computing server separate
from the microscope. This directory is constantly monitored for
acquisition of new micrographs. The only information needed to
start the processing is the name of this directory and an approxi-
mate radius of the particles in the sample.

2.2.1. Defocus estimation and particle picking
Once a new image is acquired and stored as a file, two copies of

it, at different levels of pixel binning, are generated in a working
directory. One copy, binned by a factor of 2, is used to estimate
the defocus and astigmatism of the micrograph and is then deleted.
Defocus and astigmatism are estimated with the program CTF-
FIND3, ver. 3.4 (Mindell and Grigorieff, 2003), which performs peri-
odogram averaging using a window size of 1282 pixels. The default
search range for the defocus determination is set from 0.8 to 4 lm
under focus. The output defocus and astigmatism values are stored
on file for each micrograph. The second copy of the micrograph,
which is used for all the remaining processing steps, is binned
according to the resolution set as target for the reconstruction. In
order to reduce the computational time while making sure that
the target resolution does not approach too close to the Nyquist
limit, the level of binning was set to give a pixel size at least four
times smaller than the target resolution. Hence, for the target value
of 28 Å that we used in our experiments, this translates to a final
pixel size at most of 5.5 Å. Individual particle images are located
in the micrograph using a heuristic algorithm based on the Cross-
point method (Boier Martin et al., 1997) and implemented in Ro-
bEM (http://cryoem.ucsd.edu/programs.shtm). Some steps of the
algorithm have been optimized in order to improve the detection
efficiency (Appendix A). The only input parameter required by
the program is the radius of the particle. The size of the box ex-
tracted around each particle located is set to three times the radius.
After being extracted from the micrograph, the density values of
the boxed particles are floated and normalized, and their edges
are apodized, using routines available in Auto3DEM (Yan et al.,
2007b).

2.2.2. Ab-initio reconstruction
All the particle images extracted from the micrograph are used

to compute a 3D density map without using a reference model.
Since the particles are assumed to have icosahedral symmetry,
we use the Random Model Computation (RMC) Method (Yan
et al., 2007a) as implemented in Auto3DEM. Specifically, ten initial
random models are obtained by assigning ten different sets of ran-
dom orientations to all the particle images and a first 3D recon-
struction is computed from each independent set. Each resulting
reconstruction is then independently refined by running ten itera-
tions of alignment, using a variant of the projection matching ap-
proach that is based on the Polar Fourier Transform method
(Baker and Cheng, 1996). The angular step interval (in degrees)
used in defining the search grid for the alignment is specifically ad-
justed for each dataset, using the formula (180d)/(2pr), where d
and r are the target resolution and particle radius (in Å), respec-
tively. This particular choice means that the search space is probed
with reference projections that are incrementally displaced by half
the nominal resolution, and with our settings provided a balance
between accuracy of the final map and computational cost in-
volved in the projection matching computations. The target resolu-
tion is set to 28 Å and the particle radius is that input by the user
before starting the monitoring process. The range of radii to con-
sider for projection matching is determined in an adaptive manner,
at each iteration, from the radial profile of the current reconstruc-
tion. The metric used for determining the range is based in part on
the variance of the radial profile (Cardone et al., in preparation). A
variation of this metric is used also to decide which reconstruction,
among the ten that are obtained after completion of the ten itera-
tions, is selected as the best candidate to represent the particles
analyzed.
2.3. Implementation

We developed a single program, AutoRTM, whose task is to gen-
erate 3D reconstructions in real-time from a single acquired micro-
graph. The program depends on Auto3DEM for carrying out all the
single steps of processing, like CTF estimation, particle picking, and
RMC, it implements the streamlining and automation of all the
operations, and includes a graphical interface for monitoring the
progress (Fig. 2). It is written mostly in python and relies on library
modules generally available on Linux and Mac OSX platforms.

The software is organized into two modular layers. The first,
written in Perl scripting language, controls the actual processing
of each micrograph, and it can be launched as a stand-alone pro-
gram. This feature is available primarily for testing purposes. A sec-
ond layer, written in Python language, is responsible for all
monitoring activities and it provides a graphical interface for user
interaction. With this interface, the user can verify the results by
visually inspecting several different representations of the pro-
cessed data, including the micrograph, the locations of particles
picked, the power spectrum of the micrograph and a simulated
CTF, and a central cross-section of the best reconstruction from
the particles (Fig. 2). Optionally, one may also view corresponding
sections of all ten reconstructions generated by the RMC. All the
images displayed are generated using conversion programs avail-
able in Bsoft (Heymann and Belnap, 2007).

In order to comply with the requirements of generating a recon-
struction within a few minutes after acquisition of a micrograph,
some parallelism was introduced in the processing. Since particle
picking and CTF estimation are both performed on the input micro-
graph but because they involve independent computations, they
are run in parallel. The program (RobEM) that performs particle
picking is run serially, whereas the CTF estimation program (CTF-
FIND3), which is parallelized using the OpenMP library (http://
openmp.org), runs on two processors. Furthermore, the iterative
alignment for each random model is performed on two processors,
using the Message Passing Interface (MPI) (http://www.mpi-foru-
m.org) paradigm for parallelization. The ten RMCs can additionally
be distributed on separate processing units. In this configuration,
the handling of one micrograph requires twenty processing units,
which can be located in one or multiple computing servers. In sit-
uations where such computing capabilities are not available, the
ten random models can be processed in a sequential manner, with
the overall time to completion increasing accordingly.

Programs AutoRTM and Auto3DEM are available for download
from http://cryoem.ucsd.edu.
3. Experimental procedures

3.1. Experimental data

Performance and reliability of the implemented approach have
been tested using micrographs available from datasets of bacterio-
phage P22 (Lander et al., 2006; Tang et al., 2011), two adeno-asso-
ciated viruses in complex with different monoclonal Fabs, here
defined as AAV2-C37B and AAV1-G7 (Gurda et al., 2013), Scleroti-
nia sclerotiorum partitivirus S (SSPV) (Tang, Havens, Ghabrial and
Baker, unpublished data) and Fusarium poae virus 1 (FPV) (Tang
et al., 2010). Images for all datasets but P22 were recorded on a
4 � 4 K CCD camera (Gatan, Inc.) in a FEI Polara electron micro-
scope at 200 kV and under low-dose cryogenic conditions. Micro-
graphs of P22 virions were acquired using a Tecnai F20 Twin
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Fig.2. Graphical user interface of AutoRTM. Acquired images are displayed as soon as they are available, usually within two seconds, at the left side of the interface window.
Particles picked by the program are highlighted with red circles. The incoherent Fourier Transform calculated from the acquired image and a simulated Contrast Transfer
Function are displayed at the top-center of the interface window at left and right sides, respectively. Just below this split display, a central, 1-pixel thick section from the 3D
reconstruction selected as the best of the ten candidate reconstructions is shown. At the top-right of the interface window, under the Micrographs tab, are various control
buttons that allow the microscopist to view previous results along with quantitative information on the results of the processing. These include the number of particles
picked and the estimate of the defocus values along the minimum and the maximum axes. Initial settings, such as the estimated particle radius and the name of the directory
that is constantly monitored for new images, are specified under the Session tab. Central sections from all ten candidate reconstructions can be inspected by opening an
additional window, shown at the bottom, which in this instance reveals that five of the ten reconstructions were correct. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Table 1
Statistics on the data sets used for the benchmark tests.

P22 SSPV AAV1-G7 AAV2-C37B FPV

Particle diameter (Å) 550 320 220 220 320
Micrographs 101 17 104 110 111
Pixel size (Å) 1.05 1.875 1.883 1.883 1.95
Radius (pixels)a 275 85 75 75 82
Binned box size (pixels) 205 145 115 115 135
Particles per micrographb 14 ± 2 39 ± 11 26 ± 12 29 ± 18 60 ± 12
Defocus range (lm) 1.2–2.1 2.4–8.1 1.8–4.7 1.5–3.8 1.0–2.7

A Radius is the input parameter supplied to AutoRTM for extracting particle
images from the micrographs. The value was determined from the particle size,
except for the AAV data sets, where it was adjusted to account for the presence of
Fabs bound to the capsid.

b The number of particles in each micrograph is given as an average ± standard
deviation.
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electron microscope operating at 120 kV, and recorded with a Tietz
F415 4 � 4 K CCD camera. The statistics and the setup conditions
for each data set are reported in Table 1. Three datasets (P22, SSPV,
and FPV) were acquired automatically using Leginon (Suloway
et al., 2005), whereas the data for the AAV-Fab complexes were ac-
quired manually. All the datasets were originally processed by
experienced users, who estimated the defocus in an interactive
way, using programs with different levels of semi-automation,
and picked the particles manually.

3.2. Benchmark tests

We simulated real-time analysis of micrographs acquired at the
microscope by processing separately all images in each selected
dataset. Since the accuracy of the final 3D reconstruction is the
cumulative result of the all the processing steps involved, we ana-
lyzed all the steps that we considered critical for the outcome. Spe-
cifically, we measured the accuracy of the defocus estimation, the
particle picking, and the ab initio reconstruction steps. All the tests
were performed with ad hoc routines written in Python, and the re-
sults were plotted using the matplotlib library (Hunter, 2007).

3.2.1. Defocus estimate
We defined the defocus error as the difference between the

average defocus value estimated by the experienced user and the
average defocus obtained by AutoRTM. In this definition a positive
error indicates that the defocus was underestimated by the pro-
gram, and vice versa.

3.2.2. Particle picking
We adopted two figures of merit, the precision and the recall, to

assess quantitatively the accuracy of the automatic picking algo-
rithm (Langlois and Frank, 2011). The precision metric indicates
the fraction of genuine particles actually present in the selected
subset, and it is defined by TP/(TP + FP), where TP (True Positive)
is the number of actual particles and FP (False Positive) is the num-
ber of boxed regions that do not correspond to actual particles. The
recall is the fraction of particles in the micrograph that have been
properly picked, and is defined by TP/(TP + FN), where FN (False
Negative) is the number of genuine particles that have not been de-
tected. Since the exact number and location of particles in experi-
mental micrographs was not known, we used the results of the
manual picking by experienced users as reference.

3.2.3. ab initio reconstruction
The accuracy of the ab initio reconstruction approach was mea-

sured as the ability of the RMC method to provide a reliable recon-
struction from the particles selected. For this purpose, each
reconstructed density needed to be classified either as accurate
or inaccurate. We defined a reconstruction to be accurate if it
showed the same low resolution features that were visible in the
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3D density map previously obtained from the entire dataset. The
set of reconstructions to analyze included the density maps ob-
tained at all intermediate iterations, from all the RMC runs. There-
fore, each micrograph contributed 100 maps to analyze, as a result
of ten iterations for each of the ten RMCs. Central sections of all
density maps were visually inspected and manually scored as
accurate or not. For comparison, a semi-automatic classification
was also implemented, where the manual scoring was performed
on class averages of the images, and the assignment was then ex-
tended to the members of each class. For the purpose of classifica-
tion, each central section was first normalized by subtracting the
average of all the central sections. Principal component analysis
(Pearson, 1901) was then performed on these sections by singular
value decomposition, and the first eight coefficients were used to
partition them into 40 classes as determined by the k-means clus-
tering algorithm (MacQueen, 1967). Dimensionality reduction and
clustering were performed using routines available in numpy and
scipy (Oliphant, 2007), respectively.

For each dataset we measured the success rate of the method as
the ratio between the number of micrographs for which the pro-
gram was able to provide an accurate reconstruction and the total
number of micrographs, under a given experiment. The success
rate was calculated for different simulated conditions, obtained
by limiting the number of iterations and/or the number of RMCs.
3.3. Computing resources

The benchmarks were performed on a dedicated Sun Fire X2270
cluster composed of one front node and five compute nodes, run-
ning the Rocks Cluster Distribution 5.3 (Jones et al., 2006). Each
node was equipped with two 4-core 2.67 GHz Intel Xeon X5550
processors, and between 36 and 48 GB of memory. The nodes were
connected to each other through a dedicated gigabit Ethernet net-
work, which was also used to access the data stored at the front
node using the Network File System protocol. Furthermore, the
computer cluster and the microscopes in our laboratory have ac-
cess to a Linux storage server, thus allowing sharing of data. The
executable codes were generated with the compiler GCC 4.1.2,
and parallelism was achieved using the MPI library.
Fig.3. Data sets used for the benchmark tests. A representative micrograph is
shown for each data set (bar = 100 nm).
4. Results and discussion

4.1. Data sets

During the development of the real-time automatic reconstruc-
tion system we used five different data sets to monitor its progress
and to estimate its final performances (Table 1). The data sets were
chosen among those available in our laboratory that were acquired
on CCD cameras, and they provided different levels of challenges
for the system. An example of a micrograph acquired for each data
set is shown in Fig. 3. Micrographs of bacteriophage P22 virions
(Fig. 3A) represent almost an ideal data set for automatic analysis:
the large particles are filled with DNA and are easily visible against
a clean background at any defocus value in the range available.
Also, the concentration of the sample is such that the particles
are uniformly spread without crowding or overlap in all micro-
graphs. The SSPV data set also exhibits good image quality
(Fig. 3B): in this case the micrographs were acquired with high
underfocus values, ranging from 2 to 8 lm, and all but a few par-
ticles are filled with genome. Examples of data sets that proved
to be more challenging to process are images of two different
AAV serotypes to which monoclonal antibody Fab were bound
(AAV1-G7 and AAV2-C37B; Fig. 3C and D). The AAV particles in
both samples lack genome and have capsids that are quite small
(�220-Å diameter). Also, the concentrations of these samples were
quite low, which yielded a relatively small number of particles in
each field of view. Furthermore, the background noise in these
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micrographs is relatively high owing to the presence of contami-
nants similar in size to the particles. For the AAV1-G7 complexes,
Fab binding was substoichiometric because of steric interference,
as evident from the reconstruction (Fig. 5C). Finally, the data set
of FPV (Fig. 3E) proved to be the most challenging among the five
selected, primarily because the vitrified specimen layer was too
thick and the particle concentration was too high, with many par-
ticles overlapped with neighbors. For this reason, despite the large
number of particles available in each field of view, only a limited
subset was suitable for each reconstruction.

Except for the SSPV data set, which consisted of 17 micrographs,
the other four data sets comprised at least one hundred micro-
graphs, thus making these results statistically significant. It is
important to note that the micrographs were included in the anal-
ysis without any a priori screening.
4.2. Computational time

The determination of a 3D reconstruction from a set of particle
images, starting from a single raw micrograph, requires several
processing steps, as previously described, each one contributing
to the total computation time. We evaluated the timing on our
cluster for all the micrographs available in each of the data sets
chosen (Table 2), using a total of 20 processors in parallel. The time
changes with each data set, ranging from an average of 24 s for the
AAV-Fab complexes to more than 1 min for phage P22. These tim-
ings were obtained using micrographs that were binned before
processing. For example, the P22 micrographs were binned to a
pixel size of 5 Å from the original value of 1.0 Å: we observed that
by reducing the binning to 4 Å, the average compute time per
micrograph increased dramatically, by at least 50%. In our ap-
proach, the most intensive computational step is the determina-
tion of a 3D reconstruction from the extracted particle images,
which is performed using the RMC method. Even by running in
parallel the iterative refinement of the ten (by default) random
models initially generated, the computation consumes 80% or more
of the total time, depending on the data set. The only other step
that requires any significant computation is the defocus estima-
tion, which in our tests was obtained within 6 s. Though the cur-
rent algorithm for particle picking requires less than one second,
it is nonetheless executed in parallel with the defocus estimation,
since the two processes are completely independent. This mode of
operation also allows us, in the future, to evaluate alternative par-
ticle-picking algorithms that may be more accurate (see below),
without impacting significantly the current performance of the
system.

During testing, we observed that the system performance de-
creased as a function of the number of random models being com-
puted simultaneously. This behavior was shown to depend on the
concurrent writing out to the disk storage device of the recon-
structed 3D density maps, one per iteration and per random model,
Table 2
Computational time required to reconstruct a 3D structure from one micrograph.

P22 SSPV AAV1-G7 AAV2-C37B FPV

10-RMC time (s)a,b 78 ± 3 57 ± 5 24 ± 2 24 ± 3 59 ± 2
1-RMC time (s)a,c 39 ± 1 34 ± 3 17 ± 1 17 ± 1 39 ± 2

a The time (secs) is reported as the average ± standard deviation, and it includes
all processing steps.

b The 10-RMC time is the time measured when ten RMCs, each one running on
two processors and consisting of ten iterations of alignment and reconstruction, are
distributed in parallel.

c The 1-RMC time is the time observed when only one RMC is run. The difference
between the two timings arises as a consequence of competition for I/O resources
when multiple processes access the same disk.
through the network. To evaluate how network bandwidth af-
fected performance, we repeated the tests by decreasing the num-
ber of RMCs to just one. This ‘‘1-model’’ timing result (Table 2)
represents an ideal situation (i.e. minimum time) in which no I/O
bottlenecks are encountered. The difference between the timings
for the 1-model verses 10-model tests was highest for the largest
particles (P22 data), where performance decreased twofold, and
it is less relevant for the smallest particles. In the latter instance,
it is important to note that all the timings fall within one minute.
Further improvements could be achieved by adopting alternative
hardware configurations where the I/O over the network is either
reduced, using local disks on each node to store the intermediate
results, or optimized by employing parallel file systems. We also
performed additional tests on a laptop computer equipped with
an Intel Core 5 processor and 4 GB of memory, where the process-
ing could take advantage of the direct access to the data on the lo-
cal disk. In this test, which employed two cores for each RMC, but
executing the ten computations in sequence rather than in parallel,
the average timing measured for a subset of the full set of micro-
graphs of AAV2-C37B was about one minute, which compares
favorably to the 24 s measured on the cluster using five times more
processor cores.

The number of particle images that are picked from a micro-
graph is expected to affect the time needed to obtain a reconstruc-
tion since the orientation parameters are determined for each
particle. However, there was no strong dependency between these
two quantities (Fig. 4). In our case a weak linear trend is evident
just for the SSPV and AAV2-C37B data, which are the only data sets
that exhibited large variations in the number of particles in each
micrograph. Also, as previously mentioned, the size of the particles
directly affects system performance. The timings measured from
micrographs of P22 cluster separately from the other data sets,
which are for particles that are more similar in diameter (Fig. 4).
As a result, it takes more time to process a micrograph containing
15 particles of P22 (diameter = 550 Å) than a micrograph of FPV
(diameter = 320 Å), which contains almost ten times more
particles.
4.3. Reconstruction from one micrograph

One micrograph displays particles whose number varies with
their concentration and size, and also depends on the field of view,
which is determined by the magnification setting of the micro-
scope. In the data sets used for our tests, this number ranged from
Fig.4. Dependency of computational time on number of particles picked from each
micrograph. Plot of the time required to process each micrograph and calculate one
random model (1-RMC time) against the number of particles automatically picked
and used for each reconstruction. All times are rounded to the nearest second.



Fig.5. Equatorial density sections of reconstructions. For each data set, a comparison
is shown between a 3D reconstruction determined from the particles in one
micrograph and the 3D reconstruction from all the particles available. The relative
contrast of the reconstructions is the same as that used for Fig. 3 (i.e. high density
features appear darker than the surrounding background). Bar, 20 nm. Left column:
central sections of the 3D reconstructions obtained from selected micrographs by
AutoRTM. The number of particle images extracted automatically from each selected
micrograph and how many of those agree with the particles selected manually by the
user (in parenthesis) are noted at the bottom left of each panel. Right column: central
sections of 3D reconstructions obtained from entire data sets of micrographs as
originally processed by experienced users. The number of particle images used to
compute each reconstruction is given at the bottom left of each panel.

G. Cardone et al. / Journal of Structural Biology 183 (2013) 329–341 335
a low of 2 (AAV1-G7) to a maximum of 98 (AAV2-C37B), as esti-
mated from the particles picked manually by the users who had
originally analyzed the data. From such low numbers of particles,
it is unreasonable to expect that a high resolution reconstruction
could be generated from the proposed processing scheme. There-
fore, we set the target resolution to 28 Å, which is an arbitrary va-
lue determined by experience. At this resolution level a 3D
reconstruction still conveys useful information about the structure
of particles in the sample (Fig. 5). In the case of the two AAV-Fab
complexes, the reconstructions obtained from single micrographs,
with about 40 particles selected, already revealed that the two
antibodies bind differently to the AAV capsids. In addition, close
comparison of the density levels for capsid verses Fab features in
the reconstructions makes it possible to estimate the stoichiome-
try of binding. The low resolution capsid structure of P22 was
reconstructed from just 15 particle images, while more than one
hundred were used in computing the SSPV and FPV reconstruc-
tions. It is noteworthy that for these two micrographs less than
one third of the particle images used in the automatic processing
overlapped with those selected by the experienced user. The
remaining particles picked automatically were either false posi-
tives or they were identified by the user as ‘bad’ particles (e.g. mal-
formed or damaged). Nevertheless, the RMC method proved robust
enough to enhance the components that are well preserved and
maintain a consistent structure in most particles, while any ran-
dom components only serve to increase the noise level in the final
model.

4.4. Success rate

The fidelity of the reconstruction is definitely one of the most
relevant indicators of the performance of the system, but it is also
the most difficult to assess in a rigorous and reliable manner. In
most typical applications, when the RMC approach is used on a full
data set to determine an initial reference model, up to 150 particles
are selected from two or more micrographs among the ones with
higher defocus. Using this approach it is usually possible to dis-
criminate quite reliably, either visually or by other quantitative cri-
teria, between correct and incorrect reconstructions. On the
contrary, in the set of tests we describe here, each reconstructed
density map is obtained from one micrograph with arbitrary defo-
cus and usually contains much fewer than 150 particles (e.g. as few
as 10 in our tests with P22). More significantly, a subset of the par-
ticle images included in the iterative procedure is not of actual par-
ticles (false positives), owing to inaccuracies inherent in most
automatic picking algorithms. Consequently, the maps determined
from individual micrographs by the RMC approach are necessarily
restricted in resolution, and this renders the distinction between
correct and incorrect reconstructions as more elusive. We tested
several metrics, including the variance of the map and the correla-
tion coefficient between the map and a high-resolution reference,
but none of these led to a desired bimodal distribution in which
two populations could be separated by thresholding.

Eventually we classified all the reconstructed 3D density maps
manually, by inspecting the central sections of each one. For com-
parison, and in an attempt to reduce bias in the selection process,
we also implemented a semi-automatic classification procedure
that grouped the maps into 40 clusters that were then inspected
and judged visually (see §3.2.3). In this case, all members of a given
cluster were classified as either correct or not, depending on how
close the cluster average resembled the high-resolution recon-
struction obtained from the entire data set of particle images. In
this way, for each data set we reduced the visual analysis and
the decision process by 250-fold (from �10,000 to �40 images).
However, this approach did not prove to be completely accurate,
since we observed that several clusters contained a mixed



Table 3
Accuracy of automated workflow.

P22 SSPV AAV1-G7 AAV2-C37B FPV

Success rate (%)a,c 92 (82) 94 (94) 63 (71) 85 (81) 62 (51)
Correct models out of 10b,c 4 ± 2 (4 ± 2) 8 ± 1 (8 ± 1) 3 ± 2 (3 ± 2) 5 ± 2 (5 ± 2) 4 ± 2 (4 ± 2)

a Success rate defines the frequency at which the approach obtained a correct 3D reconstruction.
b The number of correct random models, out of the ten computations launched for each micrograph, are reported in the second row as the

average ± standard deviation.
c The success of a complete RMC run, including preprocessing steps, was determined after manually classifying all the reconstructions

generated. Results obtained by classifying the reconstructions by Principal Component Analysis and k-means clustering are reported in
parentheses.

Fig.6. Analysis of factors that affect success rate. (A and B) Success rate plotted
against the number of iterations used to process ten initial random models. (C and
D) Success rate plotted against the number of RMCs executed through ten
iterations. In (A and C) the initial random models were generated from particle
images picked automatically. In (B and D) the random models were generated from
particle images identified manually in the micrographs.
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population of reconstructions, with obviously incorrect ones being
assigned to a cluster that contained a majority of correct models,
and vice versa.

Once the reconstructions were scored as correct or incorrect
according to their fidelity to the target reconstruction, we mea-
sured the success rate of the method as the percentage of micro-
graphs that yielded a correct map (Table 3). In this regard, the
FPV data set performed the worst, with the procedure being suc-
cessful with 62% of the micrographs. This result correlates with
the overall poor quality of the micrographs, as observed earlier,
which is the worst among the five sets analyzed and reported here.
The success rate exceeded 70% in the other four data sets, and for
SSPV and P22 it was better than 90%. We also estimated the aver-
age number of correct models generated by the RMC approach,
computed for just those micrographs that successfully resulted in
a reconstruction (Table 3). Since the RMC method is always suc-
cessful as long as one out of the ten models is correct, and it is able
to discriminate it as such, this number is not a strict indicator of
the ability to get a correct reconstruction. Rather, it gives a quanti-
tative hint of how easy is to get a correct map from the given par-
ticles. When comparing the success rate with the number of
correct models as defined above (Table 3), we saw no strict depen-
dency. In fact, previous studies (Yan et al., 2007a) as well as exten-
sive experience with a wide range of different data sets have
shown that the probability of producing a correct 3D reconstruc-
tion starting from a random model depends primarily on the defo-
cus level of the micrograph and on the coarseness of features on
the surface of the particles. In this context the situation is more
complicated because the accuracy of the picking algorithm is an
additional factor that affects success and must be considered (see
§4.6).

Most of the results presented here were obtained by calculating
ten random models and performing ten iterations of alignment for
each of them. These are the same default settings adopted for the
RMC approach, when used for determining an initial template from
selected micrographs recorded at high defocus and containing a
net total of at least 150 particles. Based on previous experience,
these parameters generally guarantee convergence to a reliable
template for almost all the data sets analyzed in their entirety.
Since the approach here is implemented under quite different
and more stringent conditions, we tested how the success rate cor-
relates with each of these two parameters. The correctness of the
reconstructions was assessed both manually (Fig. 6) and on the ba-
sis of a semi-automatic classification procedure (Fig. S1). When the
number of random models computed in parallel is fixed at the de-
fault setting of ten (Fig. 6A), the success rate increases rapidly with
increasing iterations of alignment, though the rate of convergence
differs for each data set. For example, the SSPV and AAV2-C37B
data sets converge rapidly in three or five iterations, respectively,
to a success rate that does not change significantly with subse-
quent iterations. Conversely, the P22 and AAV1-G7 data sets do
not seem to reach an asymptotic value, and would likely benefit
from additional iterations. Hence, the choice of ten iterations as a
default represents a compromise between computational speed
and accuracy.

When considering dependency of success rate on the number of
random models, with each one processed through ten iterations
(Fig. 6C), for all data sets but FPV and AAV1-G7, two random
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models are enough to achieve a success rate above 50%. Further-
more, use of eight random models already achieves a success rate
that is very close (within 4%) to that achieved with ten models.
Hence, we consider the default choice of running ten models as
being a conservative one. In our configuration, where the random
models are processed in parallel, reducing the number of random
models reduces the number of processors needed, but does not
necessarily decrease the total computational cost.

We also tested if the number of particles in a micrograph affects
the probability of obtaining a correct reconstruction, but no obvi-
ous trend could be detected (data not shown). For just the FPV data
set, those micrographs that contained fewer particle images than
the average did yield a significantly lower fraction of valid 3D
reconstructions. In general we observed that the quality of the par-
ticles picked, rather than their number, was a more significant
determinant of success rate. In fact the rate increases dramatically
when the particles are carefully selected by the user, as shown by
the corresponding dependency analysis on number of iterations
(Fig. 6B) and number of models (Fig. 6D) (see §4.6).

4.5. Performance of preprocessing steps

The task of the RMC step is to derive the origin and orientation
parameters for a set of 2D images of particles, and to use the
parameters to correctly combine the images, after correction for
the microscope CTF, into a 3D reconstruction. Since the process is
calibrated to generate low resolution reconstructions, the accuracy
of the defocus estimate is not expected to be critical for the success
of the approach. Conversely, we did expect that the accuracy of the
particle-picking algorithms would affect the success rate of the
procedure. To test these two hypotheses, we measured the inaccu-
racies in the algorithm used to estimate the defocus level and to
pick particles with the previous results obtained manually by the
experienced users as a ‘gold standard’ reference.

4.5.1. Defocus estimate
We estimated the CTF of each micrograph using a customized

version of CTFFIND3 (Mindell and Grigorieff, 2003), which was fur-
ther optimized by us only to enhance performance. The estimate
was performed on micrographs binned to 2048 � 2048 pixels,
independent of pixel size. The defocus search range was set to be-
tween 0.8 and 4 lm under focus by default. We found that these
settings were robust in most situations, and the program could still
determine a defocus value that fell outside the default range. How-
ever, for the SSPV data set, which involved the recording of many
micrographs at high defocus values (up to 8 lm), we reset the
range to be between 3 and 7 lm. The requirement to change the
default range to accommodate particular conditions of microscopy
is not generally desirable in an automated workflow like this one,
and an alternative approach might be to re-hardwire the default
Fig.7. Defocus error analysis. Histogram plot of defocus error estimated for each data set
by an experienced user and the average defocus value obtained using the AutoRTM pro
range between 0.8 and 7 lm to encompass a more diverse set of
experimental situations. However, the cost of this strategy would
entail an approximate doubling of the time required for estimating
the defocus, and this would necessarily extend the total compute
time. Therefore, we currently allow the microscopist to override
the default settings if necessary, rather than imposing a computa-
tional burden on any particular data acquisition.

We measured the defocus error for each micrograph, defined as
the difference between the estimate made by the user and that
made by the program (Fig. 7). Except for the SSPV data set, where
the measured errors centered around zero, the program tended to
overestimate the defocus level compared to that made by the expe-
rienced user. These results, however, are inconclusive, since we
have no reliable means to assure that the user’s estimate of defocus
was completely accurate. However, data sets were not all pro-
cessed by the same user or using the same set of programs, which
rules out a systematic bias on the user side. Overall, it seems more
plausible that the program is sensitive to the quality of the micro-
graphs and to the fraction of the field of view occupied by particles,
which translates to the amount of signal available for the estimate.
Accordingly, the largest variations of defocus errors were observed
for the AAV1-G7 and AAV2-C37B data sets, which are also the ones
with the smallest size and least number of particles. The other
three data sets exhibited errors of less than 5% for most of the
micrographs (Table 4). Furthermore, in the AAV2-C37B data set
the defocus error was higher for the micrographs acquired at lower
nominal defocus.

4.5.2. Particle picking
Location and extraction of particles from each micrograph is

performed using a multi-step algorithm that combines the Cross-
point method, a heuristic approach, with correlation refinement
(Boier Martin et al., 1997). The routines are implemented in the
program RobEM, a visualization and analysis tool that is a compo-
nent of the Auto3DEM software (Yan et al., 2007b). In this case the
program is launched in batch mode, without graphical interface.
The current implementation has been marginally modified with re-
spect to the original described in (Boier Martin et al., 1997), mainly
to improve its performance and to make it more robust under a lar-
ger range of image quality conditions. In particular, the implemen-
tation has been calibrated using several micrographs of different
quality, with the goal to prioritize minimizing the miss rate as op-
posed to trying to minimize the number of false hits. A general
description of the current algorithm, decomposed in its processing
steps, is given in Appendix A. The program requires one input
parameter from the user, which is an approximate radius of the
targeted particles in the micrograph. This parameter is used at
the initial step of the picking process to determine the level of im-
age compression and to set the scan radius for the Crosspoint
method. Notably, this is the only parameter that needs to be given
. The error is defined as the difference between the average defocus value estimated
gram. Note that the scale of the abscissa is different for each plot.



Table 4
Performance of preprocessing algorithms.

P22 SSPV AAV1-G7 AAV2-C37B FPV

Defocus error (lm)a,b 0.01 ± 0.08 �0.02 ± 0.20 0.02 ± 0.36 �0.29 ± 0.27 �0.07 ± 0.07
Defocus error (%)a,b 0.7 ± 5 �1.1 ± 6 �0.4 ± 16 �13.4 ± 15 �4.1 ± 5
Recall (%)a,c 94 ± 7 95 ± 5 69 ± 16 65 ± 15 74 ± 14
Precision (%)a,c 84 ± 9 33 ± 7 38 ± 19 36 ± 15 23 ± 5

a All measures are reported as an average ± standard deviation.
b Defocus error is the difference between the average defocus value estimated by the user and the average defocus derived from the automated

calculation, and it is reported in absolute (first row) and relative values (second row).
c Recall and precision measure the accuracy of the picking algorithm.

Fig.8. Particle detection analysis. Left column: plot of precision against recall for all
the micrographs processed. A blue ellipse is drawn for each data set centered at the
average value for each measure, with semi-axes equal to the standard deviation.
Right column: plots of precision against the average defocus as estimated by an
experienced user. Note that the scale of the defocus axis is different for each plot.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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to initiate the automated analysis. Particle picking and extraction,
which took one second or less in our tests, are performed simulta-
neously with CTF estimation, in parallel.

We evaluated the performance of the picking algorithm by
measuring the precision and the recall (see §3.2.2) for each
micrograph (Fig. 8). Precision is defined as the fraction of picked
‘particles’ that are true particles, whereas recall is the fraction of
all true particles in the micrograph that are picked (Langlois and
Frank, 2011). The complements of these two functions corre-
spond to the fraction of false positives and to the miss rate,
respectively. To be completely accurate, these measures require
knowledge of the total number of genuine particles in each
micrograph, whereas for experimental micrographs only the
number of particles selected by the user is available. The two
numbers can be different because an experienced user usually
only selects particles that show good properties according to cri-
teria developed by personal experience. Therefore, a comparison
of results obtained by automatic picking with those obtained
manually by one user may yield some biased measure of the
accuracy of the algorithm. In our tests, the P22 data set is the
only one in which almost all the particles in the micrographs,
except for a few that are empty, were picked by the user. Also,
the size and the concentration of the P22 particles make those
data an ideal target for automatic picking procedures. The other
data sets presented more challenges, as previously described.
The recall (i.e. the agreement between algorithm and user) ex-
ceeded 90% for the P22 and SSPV data sets, where the particles
are relatively easy to recognize owing to their size or high con-
trast, respectively. For particles that are empty and relatively
small (AAV-Fab complexes), or are embedded in higher levels
of noise (FPV), the agreement dropped to �70%. Concerning
the false positives, the algorithm only achieved high precision
(�85%) with the P22 data set. In the other test cases, the value
decreased to less than 40%, meaning that more than half of the
picked particles were either false positives or particles that were
not picked by the user. We inspected individual micrographs of
those data sets (SSPV and FPV) that gave the lowest precision
scores to ascertain the cause of such low performance. For SSPV
there is a mixed population of genome-empty verses genome-
full capsids. The experienced user only picked genome-full
capsids, but the picking algorithm failed to discriminate the
two subsets. For FPV, the edges of particles are not always well
defined in a particular micrograph owing to the large thickness
of the vitrified specimen. In such instances, the user only se-
lected particles exhibiting high contrast, whereas the program
also selected particles that were more embedded in the back-
ground noise. Except for P22 and a small fraction of the AAV-
Fab images, for each micrograph we found that the recall always
exceeded the precision.

We also analyzed how defocus affects the accuracy of the pick-
ing algorithm, and observed that there is only a weak dependency
(Fig. 8). In the AAV-Fab and FPV data sets, the precision tended to
be higher for micrographs acquired at higher defocus, but this
behavior was not evident in the other data sets. We did not observe
any dependency between recall and defocus (data not shown).



Table 5
Accuracy of the system for particles picked manually.

P22 SSPV AAV1-G7 AAV2-C37B FPV

Success rate (%)a,b 87 (87) 94 (94) 82 (82) 95 (94) 99 (96)
Correct models out of 10a,b,c 4 ± 2 (4 ± 2) 9 ± 1 (9 ± 1) 4 ± 2 (4 ± 2) 5 ± 2 (5 ± 2) 7 ± 2 (7 ± 2)

a Success rate and number of correct random models per micrograph were calculated after repeating the experiments reported in Table 3 but without
determining automatically the positions of particles in the micrographs, and, instead, using the coordinates determined previously by an expert user.
Definitions of the measures are given in Table 3.

b Results obtained by classifying the reconstructions by Principal Component Analysis and k-means clustering are reported in parentheses.
c The number of correct random models is reported as average ± standard deviation.
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4.6. Particle picking affects reconstruction accuracy

The number and the quality of the particles extracted from a
micrograph are expected to affect whether the RMC method can
produce a reliable 3D reconstruction. Depending on the data set,
the algorithm currently used to automatically pick particles can in-
clude numerous false positives, sometimes exceeding 50% of the
total number. To analyze how precision affects success rate, we re-
peated the entire analysis with just the sets of particles picked
manually by experienced users (Fig. 6B and D; Table 5). A compar-
ison with respect to the complete automatic approach (Fig. 6A and
C and Table 3) shows that the number of correct reconstructions,
out of the ten generated for each micrograph, tends to increase
when supposedly there are no false positives (i.e. the user is as-
sumed to be 100% accurate). The largest improvement was seen
for the FPV data set, where the number of correct reconstructions
generated almost doubles, on average, from 4 out of 10 to 7 out
of 10. In this example, the precision of the automated procedure
was only 23%, and the success rate increased from 62% to 99% for
particles that were selected manually. However, except for the
FPV data, a higher precision value does not necessarily correlate
with a higher success rate. For the SSPV data set, where the preci-
sion was�33%, the success rate did not change when using particle
images selected by the user, and the difference improved only by
10% for the AAV2-C37B data set, where the precision was �38%.
Conversely, the particles selected manually from the AAV1-G7
micrographs did show an improvement of the success rate from
63% to 82% even though the precision of this set was also 38%.
5. Conclusions

We have developed an integrated approach that can provide 3D
structural information from samples of icosahedral particles in ra-
pid and automated fashion. The approach is implemented in the
program AutoRTM, which provides visual feedback to the micros-
copist of the results of the analysis on the particles in a single
micrograph generally within a minute from its acquisition. By
inputting only minimal information to the program (approximate
particle radius and the name of a directory where newly acquired
data are stored), the microscopist can receive valuable preliminary
information about the structure of the particle being studied. For
samples that present specific challenges, additional parameters,
like the defocus range or the size of the boxed particles, can be con-
trolled as advanced settings. AutoRTM augments the structural
information available at the microscope, and it can be particularly
useful when screening new samples targeted for acquisition of
large data sets. In a future release the program will also permit
data from more than one micrograph to be combined to yield a
better resolved map that would be suitable as an initial template
for the single particle analysis. This feature would also facilitate
the screening of samples whose concentration is too low and only
yields a few particles per micrograph. The advantages of the pro-
posed approach extend beyond a simple assessment of sample
quality. For example, the AAV-Fab data sets already illustrate one
potential application. When samples are being prepared for the
purpose of studying how monoclonal antibodies bind to a virus
capsid, it is important to determine the extent to which the binding
sites are saturated, as well as verifying if steric hindrance occurs as
a result of alternative modes of binding. Such information can help
determine if a sample is suitable for large scale data acquisition,
and if the binding epitopes can be mapped at a sufficient level of
detail. The results of our present analysis show that the 3D recon-
struction obtained from the particle images contained in just one
micrograph, when correct, already provide a reliable low resolu-
tion picture of the virus-antibody binding properties that surpasses
what could be extracted simply from visual inspection or 2D anal-
ysis of the raw micrograph.

AutoRTM generates a new 3D reconstruction from each micro-
graph acquired. This approach is a useful means to assess the qual-
ity of each image separately, but it is not sufficiently robust to
guarantee a successful result. Among the factors that affect the
outcome of the RMC, we observed that the level of defocus used
to record the micrograph and the number of particles present in
the field of view only play a small role. This contrasts with our past
experience in using the RMC method to determine an initial model,
when higher defocus and a larger number of particles would in-
crease the chance of obtaining an accurate ab initio reconstruction.
Despite recent improvements to the RMC method that have made
these requirements less stringent (Cardone et al., in preparation), it
is relevant to note that previous results were obtained with parti-
cle images from particles picked manually by an expert user, usu-
ally from more than one micrograph. To the contrary, our new
approach picks particles automatically, and the accuracy of the
picking algorithm poses the major limiting factor in achieving suc-
cess rates >80%. Therefore, we are investigating the use of alterna-
tive, unsupervised picking algorithms, which satisfy the
requirement of being more accurate within a time frame of a few
seconds. Given the current setup, our results demonstrate that
the microscopist can expect to obtain a reliable estimate of the
3D structural properties of a particle after acquiring two images
at the microscope, and a third image ought to resolve any potential
remaining doubt. However, we consider such estimates of system
performance to be conservative, and in practice we expect that
the approach should do better. In fact, the micrographs used to test
the approach encompass a wider range of acquisition conditions
compared to those usually adopted during a preliminary analysis
of a sample. For example, it is common practice with most new
samples to record an initial set of images at higher defocus com-
pared to what is used to acquire a complete data set. As was dem-
onstrated for the SSPV data set, where the range of defocus is
shifted towards higher values, having a few high defocus, high con-
trast images definitely helps the automated system pick particles
more accurately, and this does increase the success rate of the
RMC.

Our approach has been designed to work on computing clusters,
using parallel libraries that facilitate communication among pro-
cessors on different nodes. The computational requirements here
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are relatively modest, and in our experiments we were able to sat-
isfy the constraint of completing the analysis of one micrograph
within a minute or so, by using up to 20 processors in parallel to
handle the most intensive computational step (i.e. the RMC). How-
ever, recent technological advancements have enabled similar
computing resources to be bundled in a single node or even into
a desktop system. Hence, our goal is to expand the capabilities of
the current system to exploit simple, multi-core systems.

Having rapid, real-time access to 3D structural information on a
sample while it is in the microscope will accelerate the screening
phase that precedes the launch of an acquisition campaign aimed
at generating a high resolution model. In addition, this type of
analysis provides a low resolution 3D structural model that can
be used as an initial template for the data set to be acquired. In this
way, processing of the data can start immediately after the first
images are acquired, and reconstructions at successively higher
and higher resolutions can be provided in real-time as more
images are recorded.
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Appendix A. Description of picking algorithm

The algorithm used to locate particles in a micrograph is based
on the Crosspoint method (Boier Martin et al., 1997). Here we only
outline the complete algorithm, mainly to highlight changes that
have been implemented with respect to its original description.
The algorithm is depicted as a sequence of computational steps,
with those that have been optimized labeled with a single asterisk
(⁄) and those that have been added to the process labeled with a
double asterisk (⁄⁄). Additional details about individual steps can
be found in the cited reference. The only inputs to the algorithm
are the digitized micrograph and the particle radius, in pixels.
The relative contrast in the micrographs is consistent with images
from unstained, vitrified samples: black pixels (i.e. lowest intensity
values) correspond to highest specimen mass thickness, and white
pixels (i.e. highest intensity values) correspond to regions where
the specimen mass thickness is lowest.

� 1. Remove outlier pixels. Pixel values that fall farther than 10
times the standard deviation of all values within the entire
micrograph are truncated.
� ⁄2. Compress micrograph. Image size is reduced by binning, by a

factor that yields a particle radius of about 20 pixels. An exact
copy is stored in a separate buffer, for later use (see steps 11
and 12).
� 3. Enhance image by histogram equalization. Pixel values are

equalized to be evenly distributed in the range between 0 and
127.
� ⁄4. Further enhance image by filtering. Each pixel value is

replaced with the average from all neighboring pixels lying
within a radial distance equal to one third of the particle radius.
� 5. Enhance contrast. Reset the range of pixel values from 0 to
127.
� 6. Binarize image (marking). Mark pixels that could be inside a

particle using a double scan procedure. Pairs of pixels at dis-
tance equal to the particle radius are compared, and the pixel
with lowest value is marked if their difference exceeds 2.5 gray
levels. The result is a binary image.
� ⁄7. Separate clusters of neighboring particles by morphological

processing. Apply two iterations of thinning to the binarized
image, followed by one iteration of dilation.
� 8. Identify particles by clustering. Find connected components

in the image using the stack algorithm. Each cluster of con-
nected pixels is identified as a putative particle.
� 9. Filter particles by cluster size. Impose the following con-

straints on the clusters obtained at Step 8:
� 9a. The number of pixels in a cluster must be between 60% and

200% of the number of pixels contained in a circle of radius
equal to that of the particle.
� 9b. The linear size of the maximum bounding box of the cluster

cannot exceed twice the particle diameter.
� ⁄9c. Calculate a score for each cluster, defined as the difference

between the pixel average within the particle radius from the
cluster center of mass and the pixel average in a shell just out-
side the radius, with thickness equal to 0.2 times the radius. The
cluster is rejected, i.e. it is not identified as a particle, if the score
is less than 2.5 (gray levels).
� ⁄⁄10. Prune outliers with high scores. The goal of this step is to

detect ‘‘contaminants’’ that we define here as exhibiting high
contrast and being similar in size to the desired particle. Such
contaminants are recognized as particles by the algorithm,
and usually are assigned an excessively high score, as defined
in 9c. The score is used to generate a histogram with the num-
ber of bins set equal to half the number of clusters. The histo-
gram is then filtered using a moving average window with
size equal to 1/10 of the full range. Subsequent analysis is lim-
ited to just the upper tail of the histogram (i.e. highest scores),
and all particles in a bin that is smaller than the size of the mov-
ing window are rejected. The procedure is repeated until no
particles are discarded.
� ⁄11. Screen particles by average density. Using the unprocessed

binned micrograph obtained at Step 2, calculate the average
density within the particle radius from the center of mass of
each remaining cluster, and discard any cluster whose average
exceeds three times the standard deviation of all the averages.
� 12. Refine particle centers. A model particle projection is gener-

ated from the average of all the remaining particles, and the
center of each particle is refined by maximizing the normalized
cross-correlation between the particle and the model.

Appendix B. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.jsb.2013.07.007.
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