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ABSTRACT Most dsRNA viruses have a genome-enclosing capsid that comprises 120 copies of a single coat protein (CP).
These 120 CP subunits are arranged as asymmetrical dimers that surround the icosahedral fivefold axes, forming pentamers
of dimers that are thought to be assembly intermediates. This scheme is violated, however, in recent structures of two dsRNA
viruses, a fungal virus from family Partitiviridae and a rabbit virus from family Picobirnaviridae, both of which have 120 CP
subunits organized as dimers of quasisymmetrical dimers. In this study, we report the CP backbone trace of a second fungal
partitivirus, determined in this case by electron cryomicroscopy and homology modeling. This virus also exhibits quasisymmet-
rical CP dimers that are connected by prominent surface arches and stabilized by domain swapping between the two CP
subunits. The CP fold is dominated by a-helices, although b-strands mediate several important contacts. A dimer-of-dimers
assembly intermediate is again implicated. The disordered N-terminal tail of each CP subunit protrudes into the particle interior
and likely interacts with the genome during packaging and/or transcription. These results broaden our understanding of
conserved and variable aspects of partitivirus structure and reflect the growing use of electron cryomicroscopy for atomic
modeling of protein folds.
INTRODUCTION
Encapsidated double-strand (ds)RNA viruses are currently

classified into seven taxonomic families (Birna-, Chryso-,
Cysto-, Partiti-, Picobirna-, Reo-, and Totiviridae) with

natural hosts from bacteria to humans (1). Among these

viruses are many significant pathogens including rotavirus,

bluetongue virus, and rice dwarf virus. Their genomes

comprise a varying number of dsRNA segments, from 1 in

totiviruses to 12 in some reoviruses. Virions from each

family have been subject to structure determinations by

x-ray crystallography and/or by transmission electron cryo-

microscopy (cryoTEM) and 3D image reconstruction.

In five of the families (all but birna- and chrysoviruses),

the virions possess a uniquely organized, genome-enclosing

capsid that comprises 120 copies of a single coat protein

(CP) (2–8). In each case, this 120-subunit T¼1 (so-called

T¼2) capsid, together with the viral genome, the viral

RNA-dependent RNA polymerase (RdRp), and any other

viral enzymes required for RNA synthesis and processing,

is designed to remain intact throughout infection and func-

tions as an elegant nanomachine for transcription and repli-

cation (9,10).
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Penicillium stoloniferum viruses S and F (PsV-S and -F)

are small dsRNA viruses from the saprophytic, filamentous

fungus P. stoloniferum (11) and contributed some of the

first evidence that dsRNA is a potent inducer of interferon

(12). Both PsV-S and -F are classified in the family Parti-
tiviridae, genus Partitivirus (13). Both possess two essential

genome segments, dsRNA1 and -2, which are individually

packaged into separate virus particles (14). The larger

(dsRNA1: 1754 bp for PsV-S, 1677 bp for PsV-F) encodes

the RdRp (539 aa for PsV-S, 538 aa for PsV-F), whereas

the smaller (dsRNA2: 1582 bp for PsV-S, 1500 bp for

PsV-F) encodes the CP (434 aa for PsV-S, 420 aa for

PsV-F) (15,16). PsV-S and -F are distantly related: the

primary sequences of RdRp and CP are respectively 27%

and 19% identical between the two viruses in pairwise

alignments with T-Coffee (17) generated for this study.

PsV-F, but not PsV-S, contains a satellite segment, the

677-bp dsRNA3, which is unrelated in sequence to

the other two segments (16). Both viruses can coinfect

P. stoloniferum at the same time (11), but the CP of each

associates only with itself in forming capsids (18) and pack-

ages only its own RNAs (11). Purified virions of both

viruses exhibit semiconservative transcription activity

(8,19). Like most other fungal viruses, PsV-S and -F do

not naturally undergo efficient extracellular transmission

and are instead transmitted intracellularly during cell divi-

sion and cell-cell fusion (13).

We have determined previously the structure of PsV-S

virions to 7.3-Å resolution by cryoTEM and 3D image

reconstruction (20). One obvious feature of the PsV-S
doi: 10.1016/j.bpj.2010.04.058
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FIGURE 1 PsV-F capsid structure. (A) Stereo view along a 2f direction of

a cryoTEM reconstruction at 6.0 Å resolution. The particle is radially depth-

cued, from red (low radii) to white (high radii). (B and C) The same magni-

fied view of cryoTEM reconstructions respectively calculated at 6.0 and
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cryoreconstruction is that 60 unusual surface arches, each

formed by a quasisymmetrical CP dimer, protrude from

the capsid shell. We have also determined recently the

structure of PsV-F virions to 3.3 Å resolution by x-ray crys-

tallography (8). The main surface features of PsV-F are

quite similar to those of PsV-S, though distinguishable in

specific details. Unexpectedly, we discovered a domain-

swapping mechanism that produces extensive interactions

between the two subunits in each preferred CP dimer. These

two subunits are related by almost-perfect local twofold (2f)

symmetry, consistent with the observation of quasisymmet-

rical dimers in the cryoreconstruction of PsV-S (20). Also

unexpectedly, the capsid assembly of PsV-F appears to

involve the formation of a dimer-of-dimers intermediate,

with an arrangement similar to the unrelated flavivirus E

glycoprotein (21) and different from the pentamer-of-dimers

intermediate suggested for several other dsRNA viruses

(2,3,9,22). The crystal structure of a rabbit picobirnavirus

determined recently also shows quasisymmetrical CP

dimers and domain swapping (7), although many details

of this structure differ from those of PsV-F.

Recent advances in cryoTEM reconstruction have led to

several near-atomic structure models from single-particle

analyses of thousands or tens of thousands of randomly

oriented, symmetrical particles (23–26). Here we report the

backbone structure of PsV-S virions, determined by

homology modeling from a cryoreconstruction to ~4.5 Å

resolution. Our PsV-S model shows capsid organization

and domain-swapping mechanisms very similar to those in

PsV-F. The PsV-S CP comprises two domains: one forming

the capsid shell and the other a surface arch. Superposition of

the PsV-S model onto that of PsV-F indicates that the shell

domains of the two CPs assume almost identical shape and

topology, whereas the arches differ substantially in both

orientation and structural details. Although the structure is

strongly a-helical, four 4-strand b-sheets, two of which are

made of b-strands from both subunits, play an important

role in stabilizing the CP dimers related by local 2f

symmetry. A compact, diamond-shaped dimer of these

dimers is centered on each icosahedral 2f axis and represents

a likely assembly intermediate. Examination of densities in

the central cores of both viruses reveals less compact RNA

layers in PsV-S compared to PsV-F. Rod-like densities

appear at the inner capsid surface in cryoreconstructions

computed at lower resolutions and are probably formed by

the positively charged, disordered N-terminal peptide in

PsV-S, as also in PsV-F. These observations suggest that

divergent members of family Partitiviridae use strongly

similar principles of capsid architecture, particle assembly,

and RNA organization.

4.7 Å resolution. Superimposed in magenta is an interpretation of the

main-chain directionality solely from these maps. (D) Crystal-derived

atomic model of PsV-F CP dimer (8) fitted into the 4.7 Å map. (E) Atomic

model of PsV-F CP dimer with the two chains shown in red and blue, indi-

cating the close contact between these two chains that leads to the wrong

interpretation of main-chain directionality in B and C.
MATERIALS AND METHODS

Due to space limitations, these are described in the Supporting Material.

References 27–41 pertain to the methods.
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RESULTS AND DISCUSSION

Subnanometer cryoTEM maps of PsV-F
and comparisons with crystal structure

Using established methods (28,42), we refined the cryore-

construction of PsV-F virions from 8.0 Å resolution (8) to

6.0 Å resolution (Fig. 1, A and B). For each map, resolution

was estimated using the conservative, FSC score of 0.5 (31).

An atomic model of the PsV-F capsid derived from the 3.3 Å

PsV-F crystal structure (8) was then fitted into the 6.0 Å

cryoTEM map and found to match remarkably well except

in a few surface loops where the crystal structure exhibits

high B factors.



FIGURE 2 Resolution estimation of the PsV-F cryoTEM map based on

crystallographic maps. (A) CC plots comparing the cryoTEM map (EM)

with the 3.3 Å x-ray crystallographic map (xtal) calculated at different reso-

lution (res) limits, in Å. (B) CC plots comparing the final cryoTEM map

(EM) with different versions of the PsV-F atomic model.
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The fitted atomic model was used as a visual guide to assess

the quality of results from further steps of refinement (see

Materials and Methods in the Supporting Material), which

led to an improved, higher-resolution cryoreconstruction of

PsV-F. This further-refined cryoTEM map correlated well

with a crystallographic map calculated at comparable resolu-

tion by noncrystallographic symmetry averaging and phase

extension, and all a-helices and b-strands fit nicely within

the cryoTEM densities. Based on the appearances of features

in the cryoTEM map, especially the ridges and troughs of

a-helical elements (Fig. 1, C and D), we estimated the effective

resolution to be slightly better than 5.0 Å. Visual comparisons

of this map to crystallographic or cryoTEM maps of other

similarly resolved structures (23,24) supported this estimate.

The improved quality of the PsV-F cryoTEM map made it

much easier to identify secondary-structure elements, as

illustrated in Fig. 1, B–E. In Fig. 1, B, C, and E, magenta

rods are used to represent elements interpreted as a-helices

in the 6.0 Å map (Fig. 1 C), including the extended

boomerang-like feature near the top of each view. With refer-

ence to the cryoTEM map alone, whether at 6.0 Å or even at

higher resolution (~5.0 Å, Fig. 1 D), the densities contrib-

uting to this feature were most readily interpreted to be

continuous and hence formed by contiguous regions of the

same peptide chain. However, on fitting the crystal-derived

atomic model, it was obvious that the boomerang is not

continuous and instead is formed by two different polypep-

tide chains in close proximity (Fig. 1, D and E). This repre-

sents part of the domain swapping that occurs in the PsV-F

CPA-CPB dimer as first described by Pan et al. (8). Thus,

correct de novo modeling of the backbone path of PsV-F

CP from cryoTEM maps alone, even at slightly better than

5.0 Å resolution, was confounded by particular, complex

aspects of the capsid structure.
Resolution estimate for PsV-F cryoreconstruction

The resolution of our final PsV-F map was estimated to be

5.0 Å or slightly better based on visual assessment of charac-

teristic features (e.g., appearances of a-helices and b-sheets).

To obtain a more objective estimate of resolution, we

computed the correlation between structure factors computed

from the full-atom, crystal-derived model and the cryoTEM

map as a function of spatial frequency (see Materials and

Methods in the Supporting Material). Careful analysis of

these and several other correlations suggested that the effec-

tive resolution of the PsV-F cryoTEM map was ~4.7 Å.

At this resolution the correlation coefficient between model

and cryoreconstruction is similar to that observed when the

model is compared to the final, crystallographically averaged

map at 3.3 Å resolution (Fig. 2 A). Hence, our systematic

determination that the resolution limit of the PsV-F cryore-

construction reached 4.7 Å is consistent with our previous

estimate of slightly >5.0 Å based on less objective, visual

comparisons. These results also support the notion that the
commonly used FSC ¼ 0.5 criterion may underestimate

the effective resolution of some cryoTEM maps or portions

thereof (43).

In the above analysis, we used the full atomic model of

PsV-F to compute correlations with the cryoreconstruction.

Subsequently, to assess how much detail the model must

include to make meaningful resolution calculations, we

repeated the systematic correlation analysis with three,

progressively less-detailed models. These included a polyala-

nine model and models containing only backbone or Ca

atoms. CC plots computed for each of these models versus

the cryoreconstruction showed that the inclusion of side-

chain information produces higher correlations compared

with less-detailed models and that these correlations extend

over a wide range of spatial frequencies (Fig. 2 B). Even at

moderate resolutions such as 6.0 Å where side chains are

not resolved, the full atomic model showed better correla-

tions than any of the less-detailed models, all of which

yielded correlations at the noise level. We interpret these

findings to indicate that, even though side chains may not

be well resolved in our maps, they made important contribu-

tions to the observed electron scattering.
Biophysical Journal 99(2) 685–694
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CryoTEM maps of PsV-S at higher resolution

Our success with refining the cryoreconstruction of PsV-F

virions from 8.0 Å to >5.0 Å encouraged us to attempt the

same for PsV-S, which was resolved previously to 7.3 Å

(20) and for which there is yet no crystal structure. Using

the same basic refinement procedures that worked well

with the PsV-F image data, we improved the cryoreconstruc-

tion of PsV-S virions, first to ~6.0 Å resolution and

ultimately to an effective resolution at least as good as for

PsV-F (Fig. 3). In this case, high-resolution features indica-

tive of secondary structures (e.g., ridges and troughs on all
FIGURE 3 PsV-S capsid structure. (A) Stereo view along a 2f direction of

a cryoTEM reconstruction at ~4.5 Å resolution (estimated). The particle is

radially depth-cued, from green (low radii) to red (high radii). (B) The

CPA-CPB dimer assumes different directionality (green lines; angle

measurements estimated at bottom) in PsV-S (left) and -F (right). Both parti-

cles are viewed along a 2f direction. Symmetry elements are evident from

the icosahedral line drawing superimposed on each particle. The approxi-

mate boundaries of the putative assembly intermediate, a dimer of CPA-

CPB dimers, are outlined by a red diamond in each virus. (C) Magnified

views of two regions of the PsV-S cryoTEM map, represented as a wire

mesh and with positions of Ca atoms modeled as cyan spheres and con-

nected by red lines to indicate chain path. For C, the map is displayed at

a high density-contour level (2.0 s) to exclude low-density features.
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a-helices) and also backbone groups and even some side

chain densities were clearly visible (Fig. 3 C). Though

most side chains were not resolved, density knobs regularly

spaced ~3.8 Å along the backbone were visible. This interval

closely matches the distance between adjacent Ca atoms in

protein structures. Based on such observations, we estimated

the effective resolution of the final map to approximate 4.5 Å

(see Materials and Methods in the Supporting Material).

As was true for PsV-F, visual comparisons of features

present in the PsV-S map to other, similarly resolved struc-

tures (23,24) supported this estimate.

The PsV-S and -F cryoTEM maps display many similar

features but also some distinct differences. Both virus capsids

are constructed from 60 CPA-CPB dimers, each of which has

a prominent surface arch with local 2f symmetry. Also, four

large, pleat-like densities occur at the dimer interface in

both virions, which indicates that PsV-S uses a domain-swap-

ping mechanism for CPA-CPB dimer formation as first re-

ported for PsV-F (8). Despite these striking similarities, the

conformations of the surface arches are quite different in the

two viruses. In PsV-F, the two tips of each arch are in close

contact, whereas in PsV-S they splay apart. The opening

beneath the PsV-S arch (Fig. 3 A) is also smaller than that in

PsV-F. In addition, the surface arches of the two viruses are

oriented quite differently: the long axis of the arch of the

CPA-CPB dimer assumes an ~37� angle in PsV-S, versus

an ~66� angle in PsV-F, relative to the line between neigh-

boring 5f vertices of the icosahedral capsids (Fig. 3 B).

Such a marked difference in orientation, however, is not

observed in the shell domains, which assume much more

similar placements in the two viruses. Moreover, despite the

different morphologies and orientations of the PsV-S and -F

arches, the local 2f axes that relate the two subunits in

a CPA-CPB dimer in the two viruses are located at similar,

though not identical, positions in the icosahedral capsids.
Modeling the PsV-S capsid dimer

The CPs of PsV-F and PsV-S exhibited only 19% sequence

identity in an initial T-Coffee alignment (17) for this study,

so it was not surprising that the crystal-derived atomic model

of PsV-F CP fitted poorly into the PsV-S cryoTEM map.

However, several features in PsV-S, particularly in the shell

domain and ascribed to a-helices, were shifted by only

a few Å from apparently homologous elements in PsV-F.

Given this, and the fact that backbone features and a number

of partial side chains were evident in the PsV-S map (Fig. 3 C),

we used the PsV-F atomic model to guide the construction of

an accurate backbone model of the PsV-S CPA-CPB dimer.

We initiated modeling based on the assumption that the

CPs of both viruses adopt a similar fold. This made it rela-

tively easy to connect all, clearly visible, secondary-structure

elements in PsV-S despite some loops not being well

resolved in the cryoTEM map. This led to an initial, Ca

backbone model for the CPA subunit of PsV-S. Assignment



FIGURE 4 Secondary-structure assignments.

The secondary structures of PsV-S are shown

above the sequence (shell domain in red, arch

domain in green), and those of PsV-F below the

sequence (shell domain in magenta, arch domain

in bluish-green). The predicted secondary structure

of PsV-S is shown in gray at top. a-helices are rep-

resented by rods, b-strands by arrows, random coils

by solid lines, and disordered regions by broken

lines.
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of the PsV-S sequence along this backbone was guided by

secondary-structure predictions generated by JPred (35)

(Fig. 4) and comparisons of the distribution pattern of pre-

dicted secondary structures to that of the initial backbone

model. These predictions suggested that, as with PsV-F,

the PsV-S CP is predominantly a-helical, which is com-

pletely consistent with the large number of twisted, tube-

like density features present in the cryoTEM map. Sequence

assignment along the modeled PsV-S Ca backbone was

further facilitated by taking into account the predicted align-

ment of the PsV-S and -F CP sequences (Fig. 4). Although

these two viruses exhibit low primary-sequence identity in

the respective CPs, the alignment of the sequences revealed

close correspondence in the predicted helices and strands

(Fig. 4).

The ~4.5 Å PsV-S cryoreconstruction shows that nearly

30% of the aa residues can be associated with knob-like

features, which appear to represent partial side chains in

the regions of well-defined a-helices and b-strands (see

Fig. 3 C). Taking into account the size, shape, and location

of each knob, we were able to fine-tune the assignment of

sequence along the PsV-S Ca backbone. We also placed

Ca atoms next to each knob within density ascribed to the

main chain and, during model building and rebuilding,

fine-tuned the model to assure that proper stereochemical

constraints were obeyed (avoiding steric clashes and regular-

izing interatomic distances between consecutive turns in

a-helices and between b-strands in sheets). The model was

then refined in real space to reinforce ideal bond lengths,

bond angles, and main-chain dihedral angles (44). Though
side chains were not included in our final PsV-S model,

they were incorporated during refinement of the model by

using rotamers that best accounted for the knobs. The side

chains, which may not be accurately modeled at this resolu-

tion, nevertheless helped to maintain proper distances

between main chains during refinement of the model.

The above procedure was used to model subunit A of the

PsV-S CP dimer. We derived an initial model of subunit B

by simply applying a local 2f-symmetry operation to the

CPA model. Several subsequent rounds of rigid-body refine-

ment were carried out to adjust the relative positions of the two

subunits in the cryoTEM density map. Thereafter, the confor-

mation and position of individual aa residues in subunit B

were manually adjusted to account for local structural differ-

ences between subunits A and B. Any steric clashes between

the two subunits in the resulting model were also removed

manually, and the stereochemistry of the entire dimer was

improved via real-space refinement using RSRef (37,38).

The PsV-S model we present here consists of the main-

chain atoms for aa 39–434 in both subunits of the CP dimer

(Fig. 5). Only the N-terminal 38 aa are missing in the model

for each subunit, presumably because this highly charged

region is flexible or disordered and therefore leads to weak

or missing density in the symmetrized cryoreconstructions

of virions. This region contains nine basic aa (Arg and Lys)

and extends toward the interior of the particle where it likely

interacts with the viral genome during assembly and/or tran-

scription. Similarly, the first 41 aa of the PsV-F subunit are

positively charged and disordered. Other than the disordered

N-terminal region, the interior wall of the PsV-S capsid seems
Biophysical Journal 99(2) 685–694



FIGURE 5 3D structures of PsV-S and -F CP dimers. (A) Side view and (B) inside-out view of a CPA-CPB dimer of (left) PsV-S and (right) -F. The color

scheme is identical to that in Fig. 4. The two subunits from a CP dimer are colored in different shades for better differentiation. Secondary structures are labeled

as defined in Fig. 4. (C) Topology diagram of (left) PsV-S and (right) -F. Secondary structures are labeled by numbers only.
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to be populated with a large number of acidic aa residues

(Asp76, Glu111, Asp114, Asp146, Glu352, and Glu377, from

each CP subunit). Because PsV-F (8) and other dsRNA

viruses (9) have capsids with a negatively charged inner

surface, and it is generally believed that electrostatic repulsion

facilitates movement of the negatively charged genome inside

transcriptionally active particles, the presence of a negatively

charged interior wall in PsV-S is consistent with the modeled

CP backbone having largely the correct sequence register.
Comparisons of PsV-F and -S capsid structures

Our cryoreconstruction of PsV-S virions to 7.3 Å resolution

reported previously showed distinctive surface arches

formed by quasisymmetrical CP dimers (20). At that resolu-
Biophysical Journal 99(2) 685–694
tion, however, it was not clear how the individual CPA and

CPB subunits interacted to form the arches or the capsid

shell. The 3.3 Å crystal structure of PsV-F virions shows

a similar capsid architecture to PsV-S, and at that higher

resolution a domain-swapping mechanism responsible for

CPA-CPB dimer formation in the capsid shell domain was

newly shown (8). Here, a new cryoreconstruction of

PsV-S virions at much-improved resolution, combined

with homology modeling, reveals greater details of the

PsV-S capsid organization and suggests a common architec-

ture and assembly pathway for PsV-S and -F, and perhaps for

partiti- and picobirnaviruses in general.

The PsV-S CP, like that of PsV-F, is a two-domain structure

(Fig. 5). The shell and arch domains respectively form

the continuous capsid and the dimeric surface protrusions.
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The shell domain comprises aa 39–171 and 327–434. The

arch domain (aa 172–326) is effectively a large polypeptide

insertion in the shell domain. In each virus the two icosahe-

drally independent subunits, CPA and CPB, adopt almost

identical structures. The root mean-square deviation distance

between all 396 Ca atoms in CPA and CPB of PsV-S is only

0.8 Å (after a 178.5� rotation and a 0.3 Å translation to super-

impose the two subunits maximally) according to our model,

compared to 1.2 Å (after a 180� rotation and a 0.2 Å transla-

tion) as noted previously for PsV-F (8). The three most struc-

turally divergent regions between CPA and CPB in PsV-S

closely match the most divergent regions in PsV-F and

include both the N- and the C-termini of each polypeptide.

In the absence of experimentally determined absolute scaling

of the PsV-S image data, the absolute dimensions of the PsV-

S and -F capsids cannot be robustly compared. However, it

appears that the outermost diameter of the PsV-S capsid is

almost the same as that of PsV-F (~380 Å), whereas the inner

diameter of the capsid may be somewhat larger in PsV-S

(255–260 Å) than in PsV-F (245–250 Å).

The shell domain of PsV-S CP has a strikingly similar struc-

tural fold to that in PsV-F (Fig. 5). Four b-sheets, two from

each monomer, occur at the dimer interface. Two of these

sheets contain b-strands from two different subunits (i.e., b7

and b8 from one, b2 and b10 from the other), suggesting

that the domain-swapping mechanism, as originally observed

in PsV-F (8), plays a major role in stabilizing the quasisymmet-

rical dimer interaction in PsV-S as well. The organization of

PsV-S CPA-CPB dimers within the capsid shell moreover

appears almost identical to that in PsV-F (8). As in PsV-F,

the interface between parallel dimers across the icosahedral

2f axes in PsV-S is much larger than the pairwise interfaces

around the icosahedral 3f and 5f axes, suggesting that a dimer

of CPA-CPB dimers is a likely intermediate during particle

assembly (see Fig. 3 B). Sequence identity in the shell-domain

region of the T-Coffee alignment is 22% (vs. 19% overall).

The structure of the PsV-S arch domain differs substan-

tially from that in PsV-F (Fig. 5). First, the PsV-S arch is

bulkier. According to our model, the PsV-S arch consists

of roughly two 3-helix bundles arranged in two separate

layers and contains 167 aa. In contrast, the PsV-F arch

consists of both a-helices and b-sheets and contains only

124 aa. Second, the main part of each arm of the arch runs

almost tangentially to the capsid shell in PsV-S, but runs

upward at almost 50� with respect to the shell in PsV-F.

This difference leads to the smaller opening beneath the

arch in PsV-S. Third, the most radially extended portions

(tips) of the two arms in the PsV-S arch are separated by

~32 Å and point away from one another; contacts between

the two arms are made instead by the two 3-helix bundles.

In contrast, in PsV-F the radially extended tips fold into

two b-hairpins that twist around each other and provide

most of the contacts between the arms. Lastly, the long

axis of each dimeric arch assumes a less acute angle in

PsV-S than in PsV-F, ~37� vs. ~66�, relative to the line
between neighboring 5f axes in the capsid (see Fig. 3 B).

From the CP structure models (Fig. 5), it is evident that these

differing orientations reflect differences in the arch

‘‘supports,’’ where each CP subunit in PsV-F contains

a unique, small b-sheet (strands b5 and b8) that lies tangen-

tial to the shell and swivels the positions of the supports,

counterclockwise as viewed from above, relative to those

in PsV-S. Sequence identity in the arch-domain region of

the T-Coffee alignment is only 16%. The function of these

surface arches in partitivirus replication remains unknown,

but their structures in both virions suggest a role in capsid

assembly or stabilization.
Internal densities and genome organization

The PsV-S cryoTEM map includes two concentric layers of

RNA densities in the particle interior (Fig. 6 A). These two

layers appear to be less closely spaced in PsV-S (~35 Å)

than do the three layers reported for PsV-F (~25 Å) (8). To

highlight the RNA organization and other internal features,

the cryoTEM maps were computed to a resolution cutoff

of 8–10 Å. This procedure reduced the high-frequency noise

seen as discontinuous densities in the high-resolution maps,

but had no effect on the interlayer RNA spacing in either

virus. Partitiviruses are known to package their two essential

genome segments, dsRNA1 and -2, into separate virus parti-

cles. Because the two segments of PsV-S are very similar in

size to those of PsV-F (see Introduction), the apparently

larger RNA spacing in PsV-S might be explained by a some-

what larger internal capsid diameter. Another possibility is

that the satellite segment, dsRNA3, unique to PsV-F (16)

might be copackaged with the genome segments, thereby

increasing the per-particle RNA content of PsV-F relative

to PsV-S.

The outermost RNA layer in the PsV-S cryoreconstruc-

tion, particularly when the contour level is reduced to display

lower-density features, appears to form connections to the

capsid shell via 120 rod-like structures (Fig. 6 B). These

rods extend from the extreme end of the ordered N-termini

of both CPA and CPB and thus seem likely to be formed

by some portion of the first 38 aa, which are disordered

and hence not visible at high resolution, and were therefore

not included in the backbone models. It is also evident that

the rod density is stronger in CPB (Fig. 6 B). The overall

PsV-S CP sequence contains only 9% basic aa, but the

28-aa stretch between residues 15 and 43 is 32% Arg and

Lys. This basic nature suggests that the N-terminal end of

PsV-S CP may interact with the viral genome to facilitate

packaging and/or transcription. The PsV-F CP N-terminus

is also rich in basic aa, with eight Arg and Lys (24%)

between residues 11 and 43. Interestingly, despite the appar-

ently larger spacing between the RNA layers in PsV-S, the

distance between the outermost RNA layer and the inner

capsid surface appears to be about the same as that in PsV-

F (~25 Å). This greater consistency between the two viruses
Biophysical Journal 99(2) 685–694



FIGURE 6 Genome organization and transcription. The PsV-S cryoreconstruction was computed to a resolution cutoff of (A) 10 Å or (B and C) 8 Å to

highlight less-ordered components in the particle interior. Density-contour levels for the three panels were 1.05, 0.85, and 1.5 s. The cryoTEM map is rep-

resented by a wire mesh, within which the Ca backbone of the PsV-S CP subunits (CPA, red; CPB, yellow) are fitted. (A) Internal genomic RNA densities.

Cyan curves highlight the two RNA density layers. (B) Rod-like densities on the inner capsid surface. The disordered N-termini of CPA and CPB are high-

lighted by red and yellow stars, respectively. (C) PsV-S capsid structure around the 5f symmetry axis. The N-terminus of one CPB subunit is highlighted by

a yellow circle.
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might be determined by RNA interactions with the

N-terminal CP peptides in each.

In PsV-F, the two rod-like densities projecting toward the

virion interior from each CP dimer lie ~15 Å apart, which is

close enough for the N-terminal peptides potentially to form

dimers within the particle interior. In contrast, the rod densities

from each PsV-S CP dimer lie ~40 Å apart and form a different

pattern of connections between the shell and the underlying

genome. The N-terminal peptide of PsV-S CP makes a sharp

turn toward the particle interior at Ala39. Therefore, the

N-terminal peptides of PsV-S and -F may both be more likely

to remain monomeric, instead of forming dimers as we origi-

nally proposed (8). Assuming a monomeric form, the structure

of the N-terminal peptide is likely to be rather flexible. In

particular, residues 15–28 contain seven of the nine Arg and

Lys from the PsV-S N-terminus, and secondary-structure

predictions suggest that this region is likely to form a loop-

helix motif that might interact with dsRNA.

At the icosahedral 5f axes where newly synthesized

mRNAs might emerge, we observe a helix–turn–helix

feature in each CP monomer of PsV-S, which gives rise to

a thin layer of density surrounding the symmetry axis

(Fig. 6 C). This is distinct from what occurs in PsV-F, where

the extreme C-terminus of the CPB molecule snakes from

underneath the helix-turn-helix feature (formed by CPA)

toward the 5f axis. By comparison, the C-terminal tail of

PsV-S CPB folds into an a-helix and occupies a location

away from the 5f axis (Fig. 6 B). Although no pore is

apparent on the 5f axis of the PsV-S capsid, we expect the

helix-turn-helix motif may undergo large-scale conforma-

tional changes to permit the release of nascent transcripts.

The RdRp molecules in most dsRNA viruses are generally

believed to be tethered via noncovalent interactions to the

interior of the capsid near the 5f symmetry axes (9,45).
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Notably, the PsV-S cryoTEM map displayed at reduced

contour level shows a density-deficient feature, surrounded

by RNA-attributable densities, underneath each 5f vertex

(Fig. S1). This feature might reflect exclusion of the RNA

densities by one or more copies of the PsV-S RdRp, as simi-

larly suggested from high-resolution structures of other

dsRNA viruses (9). Another density-deficient feature is

seen at each 3f symmetry axis, but appears smaller and

less continuous than that at the 5f axis (Fig. S1).
CONCLUSIONS

The findings in this report broaden our understanding of

conserved and variable aspects of partitivirus structure.

They also reflect the growing use of electron cryomicroscopy

for atomic modeling of protein folds. Concluding remarks

relate to the latter outcome.

Ab initio backbone modeling, in our opinion, remains

extremely challenging at 4.5 Å resolution, even for highly

averaged cryoTEM maps such as we obtained for PsV-S.

There are two main problems with such maps. The first is

discontinuous densities caused in many cases by mobile

surface loops between less-mobile secondary structures.

The second is misleadingly continuous densities caused by

poorly resolved side- and main-chain groups that are closely

positioned in space. Without prior information about the

overall fold and topology of the protein, it is therefore likely

that ab initio modeling would result in erroneous assignment

of connectivity at numerous positions in the backbone trace.

On the other hand, any homologous protein structure that is

available for fitting, as long as it folds similarly, would assist

with backbone modeling. Moreover, a homologous structure

with substantial sequence identity would help in registering

the sequences of the fitted and modeled polypeptides.
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Continued procedural improvements to extend cryoTEM

maps beyond 4.5 Å resolution—resolving additional side-

and main-chain elements and thereby eliminating both

discontinuous and misleadingly continuous densities—

would of course aid in ab initio modeling. In an attempt to

fine-tune the fitting of our PsV-S model with best-guessed

side chains, the crystallographic refinement program CNS

and the structure factors calculated from the cryoreconstruc-

tion were used to refine the structural model. Although this

pseudocrystallographic refinement was able to produce an

atomic model with side chains that better fit the cryoTEM

densities, the stereochemistry of the refined model was

poor, as indicated by a Ramachandran plot, with large

deviations in bond lengths and angles as well as many close

atom-atom contacts (data not shown). In addition, due to the

high degree of noncrystallographic symmetry in virions (60-

fold icosahedral symmetry in this case), Rfree could not be

effectively used to monitor for overrefinement. Based on

these experiences, we conclude that efforts to develop

more robust low-resolution refinement methods are war-

ranted. Such refinement methods could conceivably use

both amplitude and phase information for the structure

factors, different from typical crystallographic refinement

in which only amplitude information is available. In the

absence of high-resolution data and due to the inherently

low observation/parameter ratio, it is essential to include as

many real-space stereochemistry restraints as possible (e.g.,

individual secondary-structure elements as rigid bodies,

hydrogen-bonding constraints, and main-chain rotamers)

when attempting ab initio modeling and refinement with

current cryoTEM maps.
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