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The capsids of large, icosahedral dsDNA viruses are built from well-ordered aggregates of capsomers,
known as trisymmetrons and pentasymmetrons, which are centered on the icosahedral 3-fold and 5-fold
axes, respectively. We derive the complete set of rules for constructing an icosahedral structure from
these symmetrons when the T lattice symmetry is odd and show that there are three classes of solutions,
each of which follows from a different relationship between the size of the pentasymmetron and the val-
ues of the h and k icosahedral lattice parameters. Together, these three classes account for all possible
ways of building an icosahedral structure solely from trisymmetrons and pentasymmetrons. Also, every
icosahedral lattice with odd T number has solutions from exactly two of these three classes, with the set
of allowed classes dependent on which of the two lattice parameters is odd. For symmetric lattices (if
h = k or h = 0), the two solutions yield the same symmetron sizes, but when the lattice parameters are
equal (h = k) the solutions can be distinguished by the relative orientations of the symmetrons. We dis-
cuss these results in the context of known virus structures and explore the implications for viruses whose
structures have not yet been solved.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Early studies by Wrigley of negatively stained samples of Seric-
esthis iridescent virus (SIV)1 suggested that the viral capsid was
composed of large, well-ordered collections of capsomers (Wrigley,
1969). Capsomers were first identified in negative-stain electron
microscopy studies as characteristic, morphological units in the
capsids of simple, isometric viruses (Caspar and Klug, 1962; Horne
and Wildy, 1961). Though they often consist of pentameric or hexa-
meric oligomers of a major capsid protein with a b-barrel structure
(Rossmann and Johnson, 1989), in adenovirus and PRD-1 (Benson
et al., 2004), and many of the even larger dsDNA viruses (Yan
et al., 2009) they occur, or are predicted to occur, as trimers of a coat
protein with a double jelly-roll structure. The collections of capsom-
ers seen by Wrigley, which he named ‘‘disymmetrons”, ‘‘trisymme-
trons”, and ‘‘pentasymmetrons” were proposed to have linear,
triangular, and pentagonal symmetry and be centered on the 2-, 3-
, and 5-fold icosahedral axes, respectively. The latter two of these
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were clearly seen in both intact SIV particles and fragmented caps-
ids. Linear fragments were also observed, but the images do not pro-
vide compelling evidence that the disymmetrons were actually
incorporated into the icosahedral capsids. Starting with Goldberg’s
solution (Goldberg, 1937), which described how an icosahedron
could be covered with a regular lattice having 5-fold symmetry at
the vertices and quasi 6-fold symmetry at all other lattice points,
Wrigley devised a set of rules for constructing the icosahedral lattice,
and hence the viral capsid, from the three types of symmetrons. His
modified Goldberg diagram (Fig. 2 of Wrigley, 1969), annotated with
the allowed symmetron sizes, indicated that, when the smaller of the
two lattice parameters was odd, a solution existed that involved only
trisymmetrons and pentasymmetrons. Otherwise, all three types of
symmetrons were necessary in order to build the icosahedral capsid.
The two lattice parameters (h and k in the modern notation) are po-
sitive integers that specify the location of a 5-fold vertex relative to
its neighboring vertex. The triangulation number is defined as
T = h2 + k2 + hk and the number of lattice points is equal to
12 + 10(T � 1).

Limitations in the quality of the SIV images led to ambiguities in
their interpretation. The capsid was surmised to have a T = 156 lat-
tice with di-, tri-, and pentasymmetrons containing 9, 55, and 16
capsomers, respectively, although the possibility of a T = 129 or
T = 147 lattice was not excluded. Subsequent work on other large
icosahedral dsDNA viruses is compatible with Wrigley’s set of
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rules, but no corroborating evidence has been seen yet for the exis-
tence of disymmetrons. An analysis of images of negatively stained
samples of Tipula iridescent virus (TIV) (Manyakov, 1977) and,
more convincingly, cryo-reconstructions of Chilo iridescent virus
(CIV) (Yan et al., 2009), PBCV-1 (Yan et al., 2000), PpV01 (Yan
et al., 2005), and Frog virus 3 (FV3) (Yan et al., unpublished results)
unambiguously reveal capsids that are composed solely of tri- and
pentasymmetrons. Interestingly, while the trisymmetron sizes
vary for these viruses, the pentasymmetrons always contain 31
capsomers (Table 1). Given the close similarity between SIV and
TIV, taken together with these other results, it is highly plausible
that a modern cryo-reconstruction of SIV would yield a structure
that does not contain disymmetrons.

While the large icosahedral virus structures solved to date are
consistent with Wrigley’s formulation, the prediction that only
two-thirds of the lattices with odd T numbers can be built from
tri- and pentasymmetrons is intriguing. This compelled us to sus-
pect that one or more classes of solutions had been overlooked.
We show below that this is in fact the case and that every icosahe-
dral lattice with odd T number can be built in either one, in the case
of symmetric lattices, or two distinct ways without a requirement
to incorporate disymmetrons.

2. Results

2.1. Construction of icosahedral lattice from trisymmetrons and
pentasymmetrons is only possible for odd T numbers

The lack of compelling experimental evidence for disymme-
trons led us to investigate the rules for the construction of an ico-
sahedral capsid solely from tri- and pentasymmetrons. A
necessary, but not sufficient, condition is that the numbers of cap-
somers in the trisymmetrons (NTS) and pentasymmetrons (NPS) be
consistent with the total number of capsomers forming the capsid
(Ncap).

Ncap ¼ 12þ 10ðT � 1Þ ¼ 20NTS þ 12NPS ð1Þ

The shapes of the symmetrons place further restrictions on the
values for NTS and NPS (Fig. 1). Ignoring the presence of special ver-
tices in otherwise isometric capsids such as in PBCV-1 (Cherrier
et al., 2009), the pentasymmetron must contain a central capso-
mer, surrounded by zero or more layers of capsomers. This leads
to the result that NPS is given by:

NPS ¼ 1þ 5ePSðePS � 1Þ=2 ð2Þ
Table 1
Lattice properties for icosahedral capsids of all large dsDNA viruses with known
structures. In each instance, the capsomers located at the vertices contain five
subunits whereas all other capsomers contain three subunits. As a result, each
complete tri- and pentasymmetron contains 3NTS and 5 + 3(NPS � 1) subunits,
respectively.

Virus T h k NDS NTS NPS Method

SIVa 156 4 10 9 55 16 Neg Stain
SIVb 129 5 8 0 55 16 Neg Stain
SIVb 147 7 7 0 55 31 Neg Stain
TIV 147 7 7 0 55 31 Neg Stain
CIV 147 7 7 0 55 31 Cryo
FV3 169 7 8 0 66 31 Cryo
PBCV-1 169 7 8 0 66 31 Cryo
PpV01 219 7 10 0 91 31 Cryo

Abbreviations: T: triangulation or T number; h and k: icosahedral lattice parameters;
NDS, NTS, and NPS: number of capsomers in di-, tri-, and pentasymmetrons, respec-
tively; Neg Stain: negatively stained sample; Cryo: unstained, vitrified sample.

a Wrigley’s proposed interpretation of SIV images.
b Wrigley’s alternative interpretations of SIV images.
where ePS is the number of capsomers forming one edge of the pent-
asymmetron. Likewise, the capsomers in a trisymmetron must form
an equilateral triangle, with the consequence that NTS is given by:

NTS ¼ eTSðeTS þ 1Þ=2 ð3Þ

where eTS is the edge length of the trisymmetron.
If the forms for NPS and NTS are inserted into Eq. (1), we can eas-

ily show that capsids built solely from tri- and pentasymmetrons
cannot have even T numbers.

eTSðeTS þ 1Þ
2

¼ ðT � 1Þ
2

� 3ePSðePS � 1Þ
2

ð4Þ

The requirement that NTS has an integral value can only be sat-
isfied if the T number is odd, a condition that holds if at least one of
the lattice parameters h or k is odd. It also follows that no capso-
mer will lie on a 2-fold axis since a lattice point is found at (h/
2, k/2) only if both h and k are even.

We obtain an additional restriction on the symmetron sizes by
considering the locations of symmetrons relative to the icosahedral
symmetry axes. Requiring pentasymmetrons to be centered on the
5-fold axes ensures that their central capsomers also lie directly on
these axes. Also, since the trisymmetrons cannot contain capsom-
ers that lie on the 5-fold axes, ePS must be at least equal to one. The
situation for trisymmetrons is more complicated since a capsomer
will be centrally located at the 3-fold axis if, and only if, the T num-
ber is divisible by three (Appendix), in which case the trisymme-
tron edge length must be equal to 1, 4, 7, 10, . . . , 3m + 1. For all
others (i.e. T numbers not divisible by three), the edge length must
be equal to 0, 2, 3, 5, 6, . . . Note that there is no lower limit on eTS

since it is possible to construct an icosahedral lattice with points
only on the vertices (e.g. T = 1).

An exhaustive search for compatible values of T, ePS, and eTS that
satisfy Eq. (4) indicates that most T numbers have multiple corre-
sponding combinations of symmetron sizes (Table 2). We will
prove below that all positive integral solutions of Eq. (4) for T num-
bers of the form h2 + k2 + hk and with ePS greater than zero corre-
spond to valid ways of constructing an icosahedral lattice from
trisymmetrons and pentasymmetrons. It should be noted though
that not all sets of lattice parameters consistent with a given T
number are compatible with the solutions of Eq. (4). Although
not stated explicitly, Wrigley obviously came to this same conclu-
sion. For example, a T = 49 (h = 7, k = 0) capsid can be built from
symmetrons of size NPS = 31 and NTS = 6, but not NPS = 16 and
NTS = 15 since in the latter case it is impossible to fit the symme-
trons together without resulting in both overlapping capsomers
and gaps in the coverage of the lattice (Fig. 2).

2.2. Geometrical constraints on symmetron packing lead to three
classes of solutions

Given the geometrical constraints between the symmetrons,
the solutions of Eq. (4) can be narrowed to just those that corre-
spond to valid ways of covering the icosahedral lattice with trisym-
metrons and pentasymmetrons. This leads to three classes of
solutions (Table 3), each of which follows from a different relation-
ship between the pentasymmetron edge length and the icosahe-
dral lattice parameters. In all of the derivations that follow we
assume a right-handed (h < k) or symmetric (h = k or h = 0) lattice,
but analogous results can be obtained for left-handed lattices by
reversing the relative orientations of the symmetrons (explained
below) and interchanging the roles of h and k. To help distinguish
the results for the three classes of solutions, the symmetron sizes
and edge lengths are hereafter labeled to designate the class (e.g.
ePS1, ePS2, ePS3).

In the first class of solutions, each trisymmetron borders three
tri- and three pentasymmetrons, whereas pentasymmetrons only



Fig. 1. Schematic models of pentasymmetrons and trisymmetrons. (A) Smallest six pentasymmetrons with capsomers modeled as magenta (at vertices) and orange spheres.
The number of capsomers in a pentasymmetron, NPS, is related to the edge length, ePS, as given by the formula NPS = 1 + 5ePS(ePS � 1)/2 (Eq. (2)). (B) Smallest six trisymmetrons
with capsomers modeled as cyan spheres. The number of capsomers in a trisymmetron, NTS, is related to the edge length (eTS) as given by the formula NTS = eTS(eTS + 1)/2 (Eq.
(3)). When trisymmetrons are incorporated into an icosahedral lattice, the central capsomer (marked with black triangle) will lie on a 3-fold axis only when the value of
(eTS � 1) is divisible by three.

Table 2
List of first 15 odd T numbers together with lattice parameters (h, k) and symmetron
sizes [NPS, NTS] corresponding to solutions of Eq. (4). Note that there is only one
solution for each symmetric lattice (h = k or h = 0), but there are always two solutions
for asymmetric lattices (h – k). Although the table is limited to small T numbers,
these trends persist for T numbers at least as large as 2000. T = 49 is the first T number
for which multiple (h, k) are possible and the total number of solutions equals the
number expected from the symmetric (h = 0, k = 7) and asymmetric (h = 3, k = 5)
lattices. Without imposing geometrical constraints on the packing of symmetrons,
there is no way to decide which solutions are associated with which lattice.

T (h, k) [NPS, NTS]

1 (0, 1) [1, 0]
3 (1, 1) [1, 1]
7 (1, 2) [1, 3], [6, 0]
9 (0, 3) [6, 1]

13 (1, 3) [1, 6], [6, 3]
19 (2, 3) [6, 6], [16, 0]
21 (1, 4) [1, 10], [16, 1]
25 (0, 5) [16, 3]
27 (3, 3) [6, 10]
31 (1, 5) [1, 15], [16, 6]
37 (3, 4) [6, 15], [31, 0]
39 (2, 5) [16, 10], [31, 1]
43 (1, 6) [1, 21], [31, 3]
49 (0, 7), (3, 5) [6, 21], [16, 15], [31, 6]
57 (1, 7) [1, 28], [31, 10]

Fig. 2. Illustration of two sets of symmetron sizes permitted for a T = 49 (h = 0,
k = 7) lattice by Eq. (2). Both panels represent a triangular face of an icosahedron
with capsomers at 5-fold symmetry axes indicated by gray pentagons and all other
capsomers by hexagons. (A) The portions of three pentasymmetrons (NPS = 31) are
colored in different shades of blue and the trisymmetron (NTS = 6) in red. Although
this configuration has not been observed in nature, it is a geometrically permissible
packing of symmetrons. (B) Attempting to cover icosahedral lattice with symme-
trons of size NPS = 16 and NTS = 15 results in overlap between three corner positions
of the trisymmetron and three edge positions of 3-fold-related pentasymmetrons
(striped hexagons) together with capsomers that do not belong to either type of
symmetron (white hexagons).

R.S. Sinkovits, T.S. Baker / Journal of Structural Biology 170 (2010) 109–116 111
contact trisymmetrons (Fig. 3). The relative orientations of the
symmetrons can be described in various ways. For example, if a tri-
symmetron is viewed in an orientation such that the base of the
triangle is horizontal, the bottom-left edge borders another trisym-
metron and the bottom-right edge borders a pentasymmetron.
Alternatively, if we consider a single pentasymmetron and its five
neighboring trisymmetrons, the ‘‘dangling” edges of the trisymme-
trons that extend beyond the trisymmetron–pentasymmetron
boundaries point in a counter-clockwise direction. Another way
of visualizing this is to note that if we step from the vertex toward
the corner of the pentasymmetron and continue into the trisym-
metron, making a 60� left-hand turn directs one along the dangling
edge of the trisymmetron. This class corresponds to the set of solu-
tions recognized by Wrigley that did not require disymmetrons.
Noting the relationship between the pentasymmetron edge length
and the smaller of the two lattice parameters, we find:

h ¼ 2ðePS1 � 1Þ þ 1 ¼ 2ePS1 � 1 ð5Þ

If Eq. (5) is solved for ePS1 and the result is substituted into Eq. (4),
the allowed edge lengths and symmetron sizes are:

ePS1 ¼
hþ 1

2
; NPS1 ¼ 1þ 5ðh2 � 1Þ

8
ð6Þ

eTS1 ¼
2kþ h� 1

2
; NTS1 ¼

ð2kþ hÞ2 � 1
8

ð7Þ

In the above equations, h must be odd in order for ePS1 to have an
integer value, but there are no restrictions on k other than it be
greater than or equal to h. These equations, which relate symme-
tron sizes to the icosahedral lattice parameter, have been noted be-
fore (Simpson et al., 2003) but no derivation or geometric
interpretation was provided.

The second class of solutions is obtained by considering a right-
handed lattice where each trisymmetron borders three tri- and
three pentasymmetrons, as in the first class, but the relative orien-
tations of the symmetrons are reversed2 (Fig. 3). For example, if a
trisymmetron is again viewed in an orientation such that the base
of the triangle is horizontal, the bottom-right edge borders another
trisymmetron and the bottom-left edge borders a pentasymmetron.
Similarly, the dangling edges of the trisymmetrons point in a
clockwise direction about each pentasymmetron. Stepping from the
2 The italicized text in this paragraph is used to emphasize the differences between
the geometry of the class 1 and class 2 solutions.



Table 3
Properties of the three classes of solutions describing the coverage of a right-handed (h < k) and symmetric (h = k or h = 0) icosahedral lattices solely composed of trisymmetrons
and pentasymmetrons. For left-handed lattices, roles of h and k are interchanged and the relative orientations of symmetrons are reversed.

Class 1 Class 2 Class 3

ePS (h + 1)/2 (k + 1)/2 (h + k + 1)/2
NPS 1 + 5(h2 � 1)/8 1 + 5(k2 � 1)/8 1 + 5(h2 + k2 + 2hk � 1)/8
eTS (2k + h � 1)/2 (2h + k � 1)/2 (k � h � 1)/2
NTS ((2k + h)2 � 1)/8 ((2h + k)2 � 1)/8 ((k � h)2 � 1)/8
min(eTS) 3ePS � 2 ePS � 1 0
max(eTS) 1 3ePS � 2 ePS � 1
Restrictions h odd k odd (h + k) odd
Notes Edges of trisymmetron point counterclockwise

about 5-fold axis
Edges of trisymmetron point clockwise about
5-fold axis

Edges of pentasymmetron point clockwise about
3-fold axis

Fig. 3. Relation between pentasymmetron edge length and icosahedral lattice parameters for the three classes of solutions described in the text. Capsomers at 5-fold axes are
shown as gray pentagons. Pentasymmetrons are colored in shades of blue and trisymmetrons in red or green. In the three classes, the distance (2ePS � 1) is equal to h in class
1, k in class 2, and (h + k) in class 3. The white arrows illustrate the 60� and 90� turns at the boundaries of the symmetrons as described in the text. Note that the centers of the
trisymmetrons do not necessarily correspond to the centers of capsomers. The T numbers and icosahedral lattice parameters in this figure, T = 91 (h = 5, k = 6), T = 93 (h = 4,
k = 7), and T = 67 (h = 2, k = 7), do not have any special significance and were chosen simply to provide illustrative examples for the three classes.
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vertex toward the corner of the pentasymmetron and continuing
into the trisymmetron, then making a 60� right-hand turn, directs
one along the dangling edge of the trisymmetron. In this case the
relationship between the pentasymmetron edge length and the
larger of the two lattice parameters is given by:

k ¼ 2ðePS2 � 1Þ þ 1 ¼ 2ePS2 � 1 ð8Þ

If Eq. (8) is solved for ePS2 and the result is substituted into Eq. (4),
the allowed edge lengths and symmetron sizes for class 2 structures
are:

ePS2 ¼
kþ 1

2
; NPS2 ¼ 1þ 5ðk2 � 1Þ

8
ð9Þ

eTS2 ¼
2hþ k� 1

2
; NTS2 ¼

ð2hþ kÞ2 � 1
8

ð10Þ

As expected, Eqs. (9) and (10) have the same form as Eqs. (6) and
(7), but with the roles of h and k reversed. In addition, we now have
the restriction that k must be odd while h can take on arbitrary val-
ues less than or equal to k.

Finally, a third class of solutions exists where each pentasym-
metron borders five tri- and five pentasymmetrons, whereas the
trisymmetrons only contact adjacent pentasymmetrons (Fig. 3). If
we view the pentasymmetron such that the top edge is horizontal,
the top-right and top-left edges border a trisymmetron and pent-
asymmetron, respectively. The dangling edges of the pentasymme-
trons that extend beyond the trisymmetron–pentasymmetron
boundaries point clockwise about a central trisymmetron. Equiva-
lently, stepping from the center of the trisymmetron towards the
center of its edge, continuing into the pentasymmetron, and mak-
ing a 90� right-hand turn directs one along the edge of the
trisymmetron.

The pentasymmetron edge length is seen to depend on both lat-
tice parameters.

hþ k ¼ 2ðePS3 � 1Þ þ 1 ¼ 2ePS3 � 1 ð11Þ

If Eq. (11) is solved for ePS3 and the result is substituted into Eq. (4),
the allowed edge lengths and symmetron sizes for class 3 structures
are:

ePS3 ¼
hþ kþ 1

2
; NPS3 ¼ 1þ 5ðh2 þ k2 þ 2hk� 1Þ

8
ð12Þ

eTS3 ¼
k� h� 1

2
; NTS3 ¼

ðk� hÞ2 � 1
8

ð13Þ

For the third class of solutions, there are no restrictions on h or k
individually, but the quantity h + k must be odd. This condition is
only satisfied when one lattice parameter is odd and the other is
even.

Every icosahedral lattice with odd T number will have solutions
from exactly two of these classes. When h is odd and k is even,
there will be solutions from classes 1 and 3, but when h is even
and k is odd solutions from classes 2 and 3 result. Finally, h and
k both odd leads to solutions from classes 1 and 2 (Fig. 4).

2.3. Three classes of solutions encompass all possible ways of building
T = odd icosahedral lattices from trisymmetrons and pentasymmetrons

We began by asking which symmetron sizes are allowed for a
given icosahedral lattice. It is instructive to reverse the question



Fig. 4. Icosahedra with capsomers (modeled as spheres) arranged in six different, asymmetric lattices. In each example, capsomers at the vertices are colored magenta and
the remaining ones in three adjacent pentasymmetrons are colored orange, blue, and green to distinguish them from each other and all other, uncolored pentasymmetrons.
Capsomers in trisymmetrons are colored cyan and, except for (E), bordered in red to highlight symmetron boundaries. Models in the top row (A–C) share identical icosahedral
lattice parameters with the models directly below them (D–F). This illustrates that a given lattice can be built from symmetrons in two different ways, and sometimes solely
from pentasymmetrons (F).
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and ask which combination of symmetron sizes can be used to
build a given icosahedral lattice. The answer to this question pro-
vides a key to determining if another set of possible solutions
has been overlooked. By deriving the allowed trisymmetron sizes
relative to a given pentasymmetron size for the three classes of
solutions, we can show below that they cover all possible
combinations.

For the first class of solutions, NPS1 and therefore ePS1 depend
only on h and there are no restrictions on k. We can therefore ob-
tain the minimum and maximum trisymmetron edge lengths for a
fixed pentasymmetron size by allowing k to tend toward h and
infinity, respectively.

minðeTS1Þ ¼ lim
k!h

2kþ h� 1
2

¼ 3h� 1
2

¼ 3ePS1 � 2 ð14Þ

maxðeTS1Þ ¼ lim
k!1

2kþ h� 1
2

!1 ð15Þ

For the second class of solutions, NPS2 and therefore ePS2 depend
only on k and there are no restrictions on h other than h 6 k. The
minimum and maximum trisymmetron edge lengths for class 2
solutions are therefore obtained as h tends to 0 and k, respectively.

minðeTS2Þ ¼ lim
h!0

2hþ k� 1
2

¼ k� 1
2
¼ ePS2 � 1 ð16Þ

maxðeTS2Þ ¼ lim
h!k

2hþ k� 1
2

¼ 3k� 1
2

¼ 3ePS2 � 2 ð17Þ

For the third class of solutions, NPS3 and ePS3 depend on h + k, whose
sum must be odd. We can obtain the range of allowed trisymmetron
size by holding this sum constant and considering the limiting val-
ues on h.
minðeTS3Þ ¼ lim
h!k�1

k� h� 1
2

¼ 0 ð18Þ
maxðeTS3Þ ¼ lim
h!0

k� h� 1
2

¼ k� 1
2
¼ ePS3 � 1 ð19Þ

An unexpected result (Eq. (18)) is that it is possible to construct an
icosahedral structure solely from pentasymmetrons when the con-
dition h = k � 1 is satisfied. One restriction on an all-pentasymme-
tron structure is that no capsomers lie on the 3-fold axes. We can
show that this is true since the T number will be equal to
3(k2 � k) + 1, which is guaranteed not to be divisible by three (see
Appendix).

An important consequence of these limits (Eqs. (14)–(19)) is
that, for a given non-zero pentasymmetron size, trisymmetrons
of all sizes are allowed. The allowed values for eTS range from zero
(class 3) to infinity (class 1), and the overlap between the classes
guarantees that all possibilities between these extremes are cov-
ered. This result also confirms our earlier assertion that all solu-
tions of Eq. (4), with T numbers of the form h2 + k2 + hk,
correspond to valid ways of constructing an icosahedral lattice
from symmetrons. Since any set of symmetron sizes can be com-
bined to create an icosahedral lattice, and their sizes determine
the T number, every solution of Eq. (4) must be permissible. The
key restriction though is that the solutions are associated with only
one set of lattice parameters if two or more sets of lattice param-
eters result in the same T number. For example, when T equals
49, the solution [NPS = 31, NTS = 6] is valid only for the (h = 0,
k = 7) lattice whereas the solutions [NPS = 16, NTS = 15] and
[NPS = 6, NTS = 21] are valid only for the (h = 3, k = 5) lattice.

If we assume that there is only one way, or two if we consider
handedness, to pack together symmetrons of specified sizes, then



Fig. 5. Icosahedra with capsomers arranged in three different, symmetric lattices. Capsomers are rendered using the same coloring scheme as in Fig. 4. Models in (A) and (B),
both with T = 147 (h = 7, k = 7) lattices, illustrate solutions from classes 1 and 2. Although a T = 147 lattice is not handed, the two allowed ways to pack symmetrons result in
trisymmetron arrangements that are mirror images of each other. (C) Model with a T = 169 (h = 0, k = 13) lattice, where a trisymmetron can adopt only one orientation relative
to the neighboring pentasymmetrons and class 2 and 3 solutions are indistinguishable.
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our three classes of solutions are complete and describe all ways of
covering an icosahedral lattice with tri- and pentasymmetrons.
This assumption is reasonable since a consistent feature of all three
classes is that at least one edge of the trisymmetron is continuous
with the edge of a neighboring pentasymmetron. Without this con-
straint, we would end up with gaps in the coverage of the lattice
that could not be filled without resorting to disymmetrons.

These results also provide additional insights regarding the
symmetric lattices, which occur when h = k or when h = 0. In the
first instance (h = k), the symmetron edge lengths for class 1 match
those for class 2 and are given by ePS = (k + 1)/2 and eTS = (3k � 1)/2.
The two solutions can still be distinguished though by the orienta-
tion of the trisymmetrons relative to the pentasymmetrons (Fig. 5A
and B). When h is equal to zero, the symmetron edge lengths for
classes 2 and 3 are the same and given by ePS = (k + 1)/2 and
eTS = (k � 1)/2. In this case the two solutions are indistinguishable
since a trisymmetron with an edge length equal to ePS � 1 can only
assume one orientation relative to the pentasymmetron (Fig. 5C).
3. Discussion

We have shown that the potential ways of constructing an ico-
sahedral lattice from trisymmetrons and pentasymmetrons is
much richer than had been expected. The large dsDNA virus struc-
tures that have been solved to date are all in agreement with the
previously recognized set of solutions, what we have termed class
1, but this may be fortuitous given the small number of structures
and the fairly narrow range of T numbers that they span.

We have proven that any symmetric or skewed icosahedral lat-
tice with odd T number can be constructed from one or two sets of
symmetron sizes, respectively, but several open questions remain
for real biological systems. For example, what are the smallest col-
lections of capsomers that form recognizable symmetrons? Cryo-
reconstructions indicate that the capsomers within a trisymmetron
all have the same orientation, while those within a pentasymme-
tron take on one of two possible orientations (Yan et al., 2000,
2005, 2009). In addition, the higher resolution that has been
achieved for CIV reveals that minor capsid proteins are located at
the symmetron boundaries (Yan et al., 2009). T = 1 and T = 3 lat-
tices are mathematically consistent with symmetrons having edge
lengths equal to one, but viruses with these triangulation symme-
tries do not exhibit the higher levels of organization that have been
observed in much larger viruses.

A related question is whether there are either optimal or mini-
mal sizes for the symmetrons. Cryo-reconstructions of CIV, PBCV-1,
FV3, and PpV01 and images of negatively stained TIV reveal that all
five structures have pentasymmetrons comprised of 31 capsomers.
This is consistent with NPS = 31 being both an optimal and a mini-
mal value, but this finding may be just a coincidence since, as men-
tioned earlier, these viruses span a fairly small range of T numbers.
If NPS = 31 did represent a minimum pentasymmetron size, lattices
with odd T numbers ranging from T = 37 (h = 3, k = 4) to T = 127
(h = 6, k = 7) would still be allowed, but none have been observed
to date. The largest odd T number less than 147 for which there
is a known structure, Sulfolobus turreted icosahedral virus (Rice
et al., 2004), is 31 (h = 1, k = 5). A lack of known icosahedral viruses
in this T number range does not preclude their existence, but is
suggestive that the smallest allowed trisymmetron contains 55
capsomers. The T = 169 (PBCV-1) and T = 219 (PpV01) capsids pro-
vide additional evidence in support of this view. In these instances,
a solution from class 3 exists since one of the lattice parameters is
even and the other odd. The T = 169 (h = 7, k = 8) and T = 219 (h = 7,
k = 10) lattices could theoretically be built from symmetrons with
sizes [NPS = 141, NTS = 0] and [NPS = 181, NTS = 1], respectively, but
rather evolved to have the structures from class 1 that we observe.
An alternative interpretation of these results is that they argue for
a maximum pentasymmetron size of NPS = 31. These hypotheses of
course are merely speculative and based on limited structural data.
New studies of the morphologies of additional capsids may provide
more clues about rules for constructing large icosahedral viruses.

Just as there may be a lower limit on the T number of icosahe-
dral capsids constructed from trisymmetrons and pentasymme-
trons, there is evidence that there may also be an upper limit.
The structure of the 5000-Å diameter (ignoring fibers) mimivirus
suggests that a different capsid architecture is used (Xiao et al.,
2009). In all other large dsDNA viruses that have been studied,
the capsomers are arranged in a hexagonal close-packed lattice
and the capsomers within a trisymmetron all have the same orien-
tation. Mimivirus appears to be unique though in that one-third of
the capsomers are missing, resulting in a regular pattern of vacan-
cies. In addition, the capsomers within a face of the icosahedral
structure appear to have alternating orientations.

Mimivirus may be unique, but it is still instructive to consider
the possible symmetron sizes should a modified version of our for-
mulation prove to be applicable. As reported (Xiao et al., 2009), if
all vacancies were replaced by capsomers, the lattice parameters
of mimivirus would be estimated to have values of h and k ranging
between 18 and 20. Over the range of allowed T numbers, there are
five possible sets of symmetron sizes (Table 4). Two of these solu-
tions require all-pentasymmetron structures (e.g. Fig. 4F), both of
which we believe are rather unlikely. This is because cryo-recon-
structions of other large dsDNA viruses indicate that most capsid
curvature originates from the inherent pyramidal structure of



Fig. 6. Triangular face of an icosahedron with unit edge length. Fivefold and 3-fold
symmetry axes shown as solid pentagons and triangle and the angles between the
lattice vectors and the base of the triangle are designated as a and b. As a
consequence of rotational symmetry, the sum a + b must be equal to 60� and the
angle between the lattice vectors is 120�.

Table 4
Properties of allowed icosahedral lattices for mimivirus based on current estimates
for lattice parameters. Results listed are only provided for T = odd lattice symmetries.
The column labeled ‘‘Class” corresponds to the three classes of solutions described in
the text and in Table 3. For the example in which h = k = 19, the solutions for classes 1
and 2 are degenerate.

h k T Class NPS NTS

18 19 1027 2 226 378
18 19 1027 3 856 0
19 19 1083 1/2 226 406
19 20 1141 1 226 435
19 20 1141 3 951 0
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pentasymmetrons, whereas the approximately planar regions,
such as those seen in mimivirus, are attributed to the presence of
trisymmetrons. In addition, AFM images of defibered mimivirus
virions (Xiao et al., 2009) show irregular cracks that might be inter-
preted as trisymmetron boundaries. The remaining three solutions
all correspond to NPS = 226 and with trisymmetrons containing
378, 406, or 435 capsomers. If these results prove to be correct,
they would provide additional support for minimum symmetron
sizes of NPS = 31 and NTS = 55.

The results derived in this paper provide a framework for
understanding the morphology of large icosahedral viruses, but
many outstanding questions remain. There is no compelling rea-
son, for example, that large T = even viruses with disymmetrons
should be forbidden, but is their notable absence a consequence
of nature taking the simpler path of employing just two types of
large scale building blocks rather than three? Also, why is there
such a large gap in solved structures between T = 31 and T = 147?
Is it simply that viruses in this gap have yet to be discovered or
is it that the different assembly mechanisms used to build small
and large capsids both fail in this intermediate size regime? Nor-
mally, there is a correlation between length of genome and capsid
size, but the large dsDNA viruses tend to be much larger than is re-
quired. Could it be that capsids with T numbers of at least 147 are
easier to construct compared to smaller capsids, which pack the
genome more tightly? These and other questions ought to be an-
swered as more structures are solved and higher resolutions are
achieved.
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Appendix. Proof that a capsomer can only lie on a 3-fold axis if
the T number is divisible by three

Consider an equilateral triangle with sides of unit length and
orientated as shown in Fig. 6. If this triangle represents a face of
an icosahedron, starting at the origin (lower left 5-fold vertex)
and taking h and k steps along the h and k lattice vectors, respec-
tively, corresponds to a translation from the Cartesian coordinates
(0, 0) to (1, 0). Owing to the 3-fold symmetry of the equilateral tri-
angle, the sum of the angles a and b must be equal to 60� and
hence the angle between h and k is 120�. By invoking the law of
cosines, it can be shown that the spacing between the lattice points
d is equal to 1=

ffiffiffi

T
p

,

1 ¼ h2d2 þ k2d2 � 2hkd2 cosð120�Þ ðA1Þ

Using the law of sines, we find that the angle a is equal to
sin�1ð

ffiffiffi

3
p

h=2
ffiffiffi

T
p
Þ .
sina
hd
¼ sin 120�

1
! sin a ¼

ffiffiffi

3
p

h

2
ffiffiffi

T
p ðA2Þ

With these results, we can represent the lattice vectors in terms of
the Cartesian unit vectors as:

h ¼ ð2hþ kÞ
2T

î�
ffiffiffi

3
p

k
2T

ĵ ðA3Þ

k ¼ ð2kþ hÞ
2T

îþ
ffiffiffi

3
p

h
2T

ĵ ðA4Þ

The icosahedral 3-fold axis lies at the center of the triangle, has the
Cartesian coordinates ð1=2;

ffiffiffi

3
p

=6Þ, and can be written in terms of
the lattice vectors as (h3, k3). Using Eqs. (A3) and (A4) to solve for
(h3, k3), leads to the following pair of relations:

h3ð2hþ kÞ þ k3ð2kþ hÞ ¼ T ðA5Þ

k3h� h3k ¼ T
3

ðA6Þ

Since h and k have integer values, the latter can only have integral
solutions for (h3, k3) if T is divisible by three, thereby providing a
necessary, but not sufficient, condition for having a capsomer lo-
cated at the 3-fold axis. Simultaneously solving Eqs. (A5) and (A6)
for (h3, k3) leads to the following results that hold true for all T
numbers:

h3 ¼
h� k

3
; k3 ¼

hþ 2k
3

ðA7Þ

Although it is not obvious, we can easily show that (h3, k3) have
integral solutions when T is a multiple of three. Expressing the
squares of the numerators in Eq. (A7) in terms of h, k, and recalling
that T equals h2 + k2 + hk, we obtain

ðh� kÞ2 ¼ h2 þ k2 � 2hk ¼ T � 3hk ðA8Þ

ðhþ 2kÞ2 ¼ h2 þ 4k2 þ 4hk ¼ T þ 3ðk2 þ hkÞ ðA9Þ

Since h and k are integers, the condition that the squares of the
numerators be divisible by three guarantees that the numerators
themselves are also divisible by three. (Any integer can be ex-
pressed as a product over prime numbers. A power of an integer
will contain a particular prime factor only if the integer itself con-
tains the factor.) Together with our earlier result, this proves that
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a capsomer lies at the 3-fold axis if, and only if, the T number is
divisible by three. We note that these results are in conflict with
and correct the erroneous assertion that a capsomer lies at the 3-
fold axis whenever h and k are both odd (Yan et al., 2009).
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