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Abstract

Three-dimensional reconstruction of large macromolecules like viruses at resolutions below 10�AA requires a large set of projection

images. Several automatic and semi-automatic particle detection algorithms have been developed along the years. Here we present a

general technique designed to automatically identify the projection images of particles. The method is based on Markov random

field modelling of the projected images and involves a pre-processing of electron micrographs followed by image segmentation and

post-processing. The image is modelled as a coupling of two fields—a Markovian and a non-Markovian. The Markovian field

represents the segmented image. The micrograph is the non-Markovian field. The image segmentation step involves an estimation of

coupling parameters and the maximum �aa posteriori estimate of the realization of the Markovian field i.e, segmented image. Unlike

most current methods, no bootstrapping with an initial selection of particles is required.

� 2003 Elsevier Inc. All rights reserved.
1. Introduction

Over the past decade cryo-transmission electron mi-

croscopy (Cryo-TEM) has emerged as an important

tool, together with X-ray crystallography, to examine

the three-dimensional structures and dynamic properties

of macromolecules. Cryo-TEM specimen preparation

procedures permit viruses and other macromolecules to
be studied under a variety of conditions, which enables

the functional properties of these molecules to be ex-

amined (Baker et al., 1999; Thuman-Commike and

Chiu, 2000; van Heel et al., 2000). The three-dimen-

sional model of a specimen is normally represented as a

density function sampled at points of a regular grid. The

images of individual particles in the electron micrograph

are approximate projections of the specimen in the di-
rection of the electron beam. The Projection Theorem

that connects the Fourier Transform of the object with

the transforms of its projections is used to construct the
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spatial density distribution of the particle (Crowther

et al., 1970).

The initial step in three-dimensional structural studies

of single particles and viruses after electron micrographs

have been digitized is the selection (boxing) of particles

images. Traditionally, this task has been accomplished

by manual or semi-automatic procedures. However, the

goal of greatly improving the solution of structure de-
terminations to 8�AA or better comes with a requirement

to significantly increase the number of images. Though

50 or fewer particle projections often suffice for com-

puting reconstructions of many viruses in the 20–30�AA
range (Baker et al., 1999), the number of particle pro-

jections needed for a reconstruction of a virus with un-

known symmetry, at �5�AA may increase by three orders

of magnitude. Hence, the manual or semi-automatic
particle identification techniques create a burdensome

bottleneck in the overall process of three-dimensional

structure determination (Nogales and Grigorieff, 2001).

It is simply unfeasible to manually identify tens to

hundreds of thousands of particle projections in low-

contrast micrographs, and, even if feasible, the manual

process is prone to errors.
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At high magnification, noise in cryo-TEM micro-
graphs of unstained, frozen hydrated macromolecules is

unavoidable and makes automatic or semi-automatic

detection of particle positions a challenging task. Since

biological specimens are highly sensitive to the damag-

ing effects of the electron beam used in cryo-TEM,

minimal exposure methods must be employed and this

results in very noisy, low-contrast images. A histogram

of the density values in a typical cryo-TEM image
illustrates that gray levels in the micrograph are con-

centrated in a very narrow range.

A difficult problem in automatic particle identifica-

tion schemes is the so called labeling step, the process of

associating a label with every pixel of the micrograph,

e.g., a logical 1 if the pixel belongs to a projection of the

virus particle and a logical 0 if the pixel belongs to the

background. This process is generally described as seg-
mentation, but, the more intuitive term labeling is often

substituted. Once all pixels in the image are labeled,

morphological filtering (Heijmans, 1994) followed by

clustering (Martin et al., 1997) to connect together

components with the same label can be used. Then, we

may take advantage of additional information, if

available, to increase the accuracy of the recognition

process. In this paper we present a method of labeling
based upon hidden Markov random field (HMRF)

modelling combined with expectation maximization.

Our method lends itself nicely to automation because

it does not require any parameters to be predetermined.

For example, the Crosspoint method we introduced in

(Martin et al., 1997) requires knowledge of the particle

size and was restricted to the selection of spherical

particles. A significant advantage of the method de-
scribed here is that no prior knowledge regarding the

size or shape of the particle is required.
2. Related work

Nicholson and Glaeser (2001) provide a comprehen-

sive review of automatic particle selection algorithms
and methods. Here we only outline methods of auto-

matic particle selection we have implemented and also

some that we investigated before considering the ap-

proach presented in this paper.

Automatic particle selection methods were first de-

scribed by van Heel (1982). His method relies on com-

putation of the local variance of pixel intensities over a

relatively small area. The variance is calculated around
each point of the image field and a maximum of the local

variance indicates the presence of an object.

Several methods make use of a technique called

template matching. In such algorithms a reference image

is cross-correlated with an entire micrograph to detect

the particles. The method proposed by Frank and

Wagenkknecht (1983-84) uses correlation functions to
detect the repeats of a motif. This approach is restricted
to either a particular view of an asymmetric particle, or

to any view of particles with high point group symmetry,

such as icosahedral viruses. Cross-correlation proce-

dures are also performed during the post-processing

phase of the Crosspoint method presented in Martin

et al. (1997).

Another class of automatic particle identification

methods are feature-based. For example, the local and
the global spatial statistical properties of the micrograph

images are calculated in the method discussed in Lata

et al. (1995). To isolate the particles and distinguish

them from the noise, clustering based upon a discrimi-

nant analysis, in the feature space is then performed.

This technique leads to many false positives.

Approaches based upon techniques developed in the

computer vision field such as edge detection (Gonzales
and Woods, 1996) are also very popular. Edges are

significant cues to a transition from a view of the particle

projection to the view of the background. Edges

are generally signalled by changes in the gradient of

the pixel intensity.

Consider for example the edge detector proposed by

Canny (1986). The image is initially smoothed by

Gaussian convolution with a kernel variance of r. Then, a
simple 2D first derivative operator is applied to the

smoothed image to highlight regions of the image with

high-valued first spatial derivatives. Edges give rise to

ridges in the gradient magnitude image. A process

known as non-maximal suppression is then applied

wherein the algorithm tracks along the top of these

ridges and sets to zero all pixels that are not actually on

the ridge top, so as to give a thin line in the output. The
tracking process is controlled by two thresholds,

High > Low. Tracking can only begin at a point on a

ridge higher than High. Tracking then continues in both

directions out from that point until the height of the

ridge falls below Low. This helps to ensure that noisy

edges are not broken up into multiple edge fragments.

The effect of applying a Canny edge detector with

parameters Low ¼ 0:03, High ¼ 0:07, and r ¼ 3 to the
image of frozen-hydrated virus particles is illustrated in

Fig. 1.

The parameters of the Canny edge detector are gen-

erally selected on an ad hoc basis. Although the optimal

values of parameters required by the edge detection al-

gorithm may not vary much from one micrograph to

another when the micrographs were collected under

similar experimental conditions, nevertheless the ad hoc
selection of the parameters is not very convenient.

Edges are significant cues to the presence of an object

boundary. Thus, sometimes edge detection is used as a

pre-processing step, as in the method proposed in Ha-

rauz and Lochovsky (1989). In this case the edges are

further processed by spatial clustering. Particles are

detected by symbolic processing of such a cluster of edge



Fig. 1. The use of Canny edge detector. (A) Small field of view from an electron microscope of frozen hydrated virus particles. (B) Same as (A) after

application of Canny edge detector. (C) The histogram of the pixel intensities in (A) illustrates the narrow dynamic range of pixel intensities.
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cues representing a particle. The approach taken by Zhu

et al. (2001) is to first obtain an edge map of the mi-

crograph consisting of the edge cues. The Hough trans-

form is used to spatially cluster the edges to represent

particles. The Hough transform is based upon a voting

algorithm (Gonzales and Woods, 1996).

The signal-to-noise ratio (SNR), and in general the

characterization of the noise in a micrograph, are very
important to determine the best technique for automatic

particle identification to be used for that micrograph.

Noise estimation could help the automatic selection of

the parameters of an edge detection algorithm.

Elder and Zucker (1998) describe a method of auto-

matic selection of the reliable scales for the computation

of the second order derivative of the intensity in the

image field. A scale is assigned to each pixel for
the computation of the second order spatial derivative.

The noise is assumed to be additive white Gaussian. The

idea is to select scales for each pixel that, given the

magnitude of the standard deviation of the noise, are

large enough to provide a reliable derivative estimate. If

the second order derivative estimate at a pixel for a

particular scale is below a threshold which is governed

by the standard deviation of the noise, then the scale is
increased until the second order derivative at such a

scale exceeds the threshold. The only parameter required

by this method is the standard deviation of the noise

content. Thus, a procedure for the estimation of the

standard deviation of the noise in micrographs would

lead to an automatic edge detection algorithm.

Lee and Hoppel (1989) describe a fast method to

compute the standard deviation of the noise in an image.
This method is based upon two assumptions (a) identi-

cally distributed (i.i.d) noise, and (b) a linear noise

model. This means independent zero mean additive

noise and unit mean multiplicative noise. Consider the

following random variables representing Zða;bÞ is the

observed intensity at the pixel with coordinates ða; bÞ,
Xða;bÞ is the noise free true intensity at the pixel with

coordinates ða; bÞ, W is a random variable that repre-
sents a zero mean additive i.i.d. noise with a standard

deviation sw, and V is a random variable that represents
a unit mean multiplicative noise with standard deviation

sv. Then,

Zða;bÞ ¼ Xða;bÞV þ W : ð1Þ
For a homogeneous block

�ZZ ¼ �XX ; ð2Þ

�WW ¼ 0; ð3Þ

�VV ¼ 1; ð4Þ
thus

varðZÞ ¼ s2v � �ZZ2 þ s2w: ð5Þ
Thus, there is a linear relation between varðZÞ and �ZZ2

with the coefficients being the variances of the respective

linear noise types—additive with sw and multiplicative

with sv. The algorithm to estimate sw and sv consists of
the following steps:

1. Divide the image into blocks of a given size, e.g.,

4� 4 or 8� 8 pixels.

2. Compute the variance (i.e., varðZÞ) and square of the
means (i.e., �ZZ2) of the pixel intensities in each block.

3. Use a least squares method to approximate a linear re-

lation between the variances and the squares of the

mean. A least square solution with negligible slope is

indicative of an additive noise.

We illustrate the use of this method of noise estima-

tion to detect Ross river virus particles in a micrograph.

The edge detection algorithm is fully automatic. How-
ever, at larger variance of additive noise it has been

observed that the algorithm fails to identify many edges

and returns many spurious edges.

Fig. 2(B) shows the plot of varðZÞ versus �ZZ2 for the

image in Figs. 2(A) and (C) shows the edges detected.

These and similar experiments convinced us that edge

detection methods are problematic for low-contrast,

noisy electron micrographs. Also, experiments with iso-
conturing techniques (Song and Zhang, 2002) yielded

discouraging results. Cross-correlation based techniques

have recently been extended for selection of selection

particles with unknown symmetry, or those that are

asymmetric. We are also well aware of the limitations of



Fig. 2. Edge detection of a micrograph of a frozen hydrated sample of Ross river virus: (A) A portion of the micrograph. (B) A plot of varðZÞ versus
Z2 for the micrograph (A) indicates an additive noise. (C) The edge map for (A). (D) Histogram of the pixel intensity distribution in (A).
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semi-automatic techniques like our own Crosspoint
method (Martin et al., 1997) and we were most interested

in fully automatic techniques. Hence, after focusing our

attention onmethods that exploit the statistical properties

of micrographs, we chose to study an HMRF scheme for

particle selection.
3. Micrograph pre-processing based upon anisotropic
diffusion

Often, an automatic particle identification method

involves a pre-processing step designed to improve the

SNR of a noisy micrograph. Various techniques, such as

histogram equalization, and different filtering methods

are commonly used. Now we describe briefly an aniso-

tropic filtering technique we found very useful for en-
hancing the micrographs before the segmentation and

labeling steps.

While other pre-processing techniques such as histo-

gram equalization, attempt to increase the dynamic range

of the low-contrastmicrographs, the anisotropic diffusion
may reduce this dynamic range, as seen in Fig. 3(C). The
aim of anisotropic diffusion is to enhance the ‘‘edges’’

present in the image by smoothing the regions devoid of

�edges.�
A diffusion algorithm is used to modify iteratively the

micrograph, as prescribed by a partial differential

equations (PDE) (Perona and Malik, 1990). Consider

for example the isotropic diffusion equation

oIðx; y; tÞ
ot

¼ divðrIÞ: ð6Þ

In this partial differential equation t specifies an artificial

time and rI is the gradient of the image. Let Iðx; yÞ
represent the original image. We solve the PDE with

the initial condition Iðx; y; 0Þ ¼ Iðx; yÞ, over a range of

t 2 f0; Tg. As a result, we obtain a sequence of filtered

images indexed by t.
Unfortunately, this type of filtering produces an un-

desirable blurring of the edges of objects in the image.
Perona and Malik (1990) replaced this classic isotropic

diffusion equation with



Fig. 3. Anisotropic filtering. (A) A portion of a micrograph of frozen-hydrated Ross river virus particles. (B) Histogram of the pixel intensities in the

micrograph displayed in (A). (C) The image in (A) after 10 cycles of anisotropic filtering. (D) Histogram of the pixel intensities in the micrograph

displayed in (C).
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oIðx; y; tÞ
ot

¼ div½gðkrIkÞrI �; ð7Þ

where krIk is the modulus of the gradient and gðkrIkÞ
is the ‘‘edge stopping’’ function chosen to satisfy the

condition g ! 0 when krIk ! 1.

The modified diffusion equation prevents the diffu-

sion process across edges. As the gradient at some point

increases sharply, signalling an edge, the value of the
‘‘edge stopping’’ function becomes very small making
oIðx;y;tÞ

ot effectively zero. As a result, the intensity at that

point on the edge of an object is unaltered as t increases.
This procedure ensures that the edges do not get blurred

in the process.

The result of applying ten iterations of anisotropic

filtering to an electron micrograph of frozen-hydrated

dengue virus particles is illustrated in Fig. 3. The efficacy
of anisotropic diffusion is ascertained by the illustration

in Fig. 4. Clearly a higher number of iterations benefits

the quality of segmentation. However increasing the

number of iterations is detrimental as it causes wide-
spread diffusion resulting in joining of nearby projec-

tions in the segmentation output.
4. Informal presentation of the segmentation method

The essence of the method used for labeling pixels in

a micrograph is now briefly introduced. It is well known

that the temporal evolution of a physical process does

not suffer abrupt changes and that the spatial properties

of objects in a neighborhood exhibit some degree of

coherence. Markov models are used to describe the

evolution in time of memoryless processes, i.e., those
processes whose subsequent states do not depend upon

the prior history of the process. Such models are char-

acterized by a set of parameters such as the number of

states, the probability of a transition between a pair of

states, and so forth.

Hidden Markov models exploit the ‘‘locality’’ of

physical properties of a system and have been used in

speech recognition applications (Rabiner, 1989) as well



Fig. 4. The effect of the number of iterations of anisotropic diffusion on segmentation, when all other parameters are kept constant. (A) A portion of

a micrograph of frozen-hydrated Chilo Iridescent virus (CIV) particles. (B) Segmentation without anisotropic diffusion, (C) three iterations of

anisotropic diffusion followed by segmentation (D) ten iterations of anisotropic diffusion followed by segmentation.
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as object recognition in two dimensional images (Besag,

1986). The term ‘‘hidden’’ simply signifies the lack of

direct knowledge for constructing the temporal or spa-

tial Markov model of the object to be detected, e.g., the

virus particle, or the physical phenomena to be investi-

gated, e.g., the speech.
A classical example wherein a hidden Markov model

is used to describe the results of an experiment involves

the tossing of a coin in a location where no outside

observer can witness the experiment itself, only the se-

quence of head/tail outcomes is reported. In this exam-

ple, we can, for instance, construct three different

models assuming that one, two, or three coins were used

to generate the reported outcomes. The number of states
and the probability of a transition between a pair of

states are different for the three models. The information

about the exact setup of the experiment, namely the
number of coins used, is hidden: we are only told the

sequence of head/tail outcomes.

Expectation maximization is a technique for selecting

the parameters of the model that best fit the identifying

information available. The more information we can

gather, the more reliable we can expect the choice of
model to be. Also, once the model is available, the more

accurate the parameters of the model are. The digitized

micrographs may constitute the only data available. It is

not uncommon, for example, to have additional infor-

mation such as a low resolution, preliminary 3D re-

construction of the object of interest. The extent of prior

knowledge will vary among different applications and

hence the model construction becomes application-
dependent.

Hidden Markov techniques are often used to con-

struct models of physical systems when the information
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about the system is gathered using an apparatus that
distorts in some fashion the physical reality being

observed. For example, images of macromolecules

obtained using cryo-TEM methods are influenced by

the contrast transfer function (CTF) characteristic of

the imaging instrument and the conditions under which

images are obtained, just as an opaque glass separating

the observer from the individual tossing the coins pre-

vents the former from observing the details of the ex-
periment discussed above. This explains why hidden

Markov techniques are very popular in virtually all ex-

perimental sciences.

The term ‘‘field’’ is used to associate the value of the

property of interest with a point in a time-space coor-

dinate system. For example, in a 2D image each pixel is

described by two coordinates and other properties such

as it�s intensity, label, etc. In HMRF models, the field is
constructed based upon a set of observed values. These

values are related by an unknown stochastic function to

the ones of interest to us. For example, a step in auto-

matic particle selection is the labeling of individual

pixels. Labeling means to construct the stochastic pro-

cess X ði; jÞ describing the label (0 or 1) for the pixel with

coordinates (i,j) given the stochastic process Y ði; jÞ de-

scribing the pixel intensity. The pixel intensities are ob-
servable, thus a model for Y ði; jÞ can be constructed.

Our interest in HMRF modelling was stimulated by

the successful application of this class of methods to

medical imaging. The diagnosis of abnormalities from

MRI images (Zhang et al., 2001) based on HMRF

modelling is used to distinguish between healthy cells

and various types of abnormal cells, subject to the ar-

tifacts introduced by the MRI exploratory methods.
These artifacts are very different than the ones intro-

duced by an electron microscope. While the basic idea of

the method is the same, the actual modelling algorithms

and the challenges required to accurately recognize the

objects of interest in the two cases are dissimilar. The

most difficult problem we are faced with is the non-

uniformity of the layer of ice in cryo-TEM micrographs.
5. Hidden Markov Random field models and expectation

maximization

Image segmentation can be thought of as a labelling

problem where the task is to label the image pixels as

belonging to one of several groups. Particle selection

amounts to a binary filtering operation, in that pixels are
marked according to whether they belong to the particle

or the background. Hence, such a segmentation could be

thought of as labelling of the image field with labels

picked up from a binary set {0,1}. Here we discuss the

rationale for image segmentation based on the use of

hidden Markov random field models and expectation

maximization.
5.1. Markov random field models

Markov random field (MRF) theory provides a basis

for modelling contextual constraints and allows us to

formulate particle identification as an optimization

problem. It is commonly accepted that the pixel inten-

sities in a micrograph exhibit high spatial statistical in-

terdependence, i.e., background pixels have a high

probability of occurring next to other background pix-
els. Likewise, ‘‘particle’’ pixels generally lie adjacent to

other ‘‘particle’’ pixels. The key assumption of a high

spatial interdependence present in the image field can be

easily incorporated into a Markov random field model.

5.1.1. Notations and basic assumptions

Given an experimental image, our goal is to assign a

label to every pixel. We use the following notations:
L ¼ f0; 1g—the set of labels.

D ¼ f1; 2; . . . ; dg—the set of quantized intensities in

the observation field, i.e., the micrograph.

S ¼ f1; 2; . . . ;Mg—the set of indices. R ¼ fri; i 2 Sg a

family of random variables indexed by S.
r—a realization of R.
Let X and Y be random fields, where Y represents the

observed field i.e., the micrograph, and X represents the
segmented image. A realization of a random field is a set

of values for all the elements of the field. For example,

the realization of the field X consists of the set of labels

(0 or 1) for every pixel. A realization of the field Y is the

set of intensities for each pixel. We denote by x and y a

particular realization of the two respective fields.

Let X be the set of all realizations of the random field

X , and similarly let Y be the set of all realizations of the
random field Y .

X ¼ fx ¼ ðx1; . . . ; xMÞjxi 2 L; i 2 Sg
and

Y ¼ fy ¼ ðy1; . . . ; yMÞjyi 2 D; i 2 Sg:
The label assigned to the random variable xi determines

the parameters of the distribution for the observed

random variable yi

P ðyijxi ¼ ‘Þ ¼ f ðyi; hlÞ; h‘ ¼ fl‘; r‘g; 8‘ 2 L: ð8Þ
The function f is assumed to be normally distributed

with mean l‘ and standard deviation r‘, i.e.,

f ðyijxi ¼ ‘Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2pr2

‘

p exp

(
� ðy � l‘Þ

2

2r2
‘

)
: ð9Þ

The assumption of a Gaussian functional form of dis-

tribution of intensities conditioned on pixel labels is based

on the observations presented in Fig. 5. A histogram of

intensities for portions of the background is shown in

Fig. 5(A). Fig. 5(B) shows the corresponding histograms

for projections of T4 prolate virus shown in Fig. 13. The
two histograms resemble a Gaussian distribution.



Fig. 5. The assumption of gaussian distribution of pixel intensities is supported by the experimental evidence from the histograms of pixel intensities

belonging to the background and to particle projections. (A) The distribution of the background pixel intensities. All the pixels constituting the

background should ideally be assigned the same label. (B) The distribution of the pixel intensities inside the projections of virus particles. All the

pixels constituting one projection should ideally be assigned the same label, different from the one assigned to pixels from the background.
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5.1.2. MRF description

In an MRF, the sites in S are related to each other via

a neighborhood system

N ¼ fNi; i 2 Sg;
where Ni is the set of neighbors of i

Ni ¼ fj 2 S : dði; jÞ2 6 r; j 6¼ ig;
where dði; jÞ is the distance between two sites. Note that

a site is not a neighbor of itself. An example of a second

order neighborhood i.e., a neighborhood in which ver-

tically, laterally, and diagonally adjacent sites are mu-

tual neighbors, is presented in Fig. 6. The pixel marked x
represents the center relative to which the neighborhood
is defined. A clique is a subset of sites in S. c � S is a

clique if every pair of distinct sites in c are neighbors.

Single-site, pair-of-sites, triplets-of-sites cliques, and so

on, can be defined, depending upon the order of the

neighborhood.

A random field X is said to be an MRF on S with

respect to a neighbor system N if and only if
Fig. 6. Second order neighborhood. A single-site clique and four pair-of-site

second order neighborhood on the left.
P ðxÞ > 0 8x 2 X

and

P ðxi j xS�figÞ ¼ P ðxi j xNiÞ:
The local characterization of the MRF defined above
simply states that the probability that site i is assigned

label xi depends only upon the neighborhood of i. The
probability distribution P ðxÞ is uniquely determined by

the conditional probabilities. However, it is computa-

tionally very difficult to determine these characteristics

in practice. We witness a computational explosion as the

neighborhood size is even moderately increased.

The Hammersley–Clifford theorem establishes a re-
lation between the MRF and the Gibbs distribution.

The Gibbs Distribution relative to neighborhood system

N has a probability measure given by

P ðxÞ ¼ Z�1 � e�
UðxÞ
T ; ð10Þ

where Z is the normalizing constant or partition function

given by
s cliques (top right) and four triple-site cliques (bottom right) for the
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Z ¼
X

8xi2L;8i2S
e�

UðxÞ
T ; ð11Þ

T , a constant called the temperature, is assumed to be 1

and U is the energy function

UðxÞ ¼
X
c2C

VcðxÞ; ð12Þ

given by the sum of clique potentials over all possible

cliques. C denotes the set of all possible cliques given a
neighborhood. The set C consists of all the cliques

corresponding to each site in the label field. Recall that

the cliques have been defined as a part of Markov ran-

dom fields for incorporating interaction between

neighbors. As we shall see later, this may be used to

ensure a smoothness in the variation of the labels.

Now we need to compute the probability of a par-

ticular realization x of X . The Hammersley–Clifford
theorem ensures us such a means. It states that X is a

MRF on S with respect to a neighbor system N if and

only if X is a Gibbs random field on S with respect to the

neighbor system N (Geman and Geman, 1984). This

provides a simple way of specifying a joint probability

for a realization with just the knowledge of conditional

probability for a neighborhood at the points.

An auto logistic model (Li, 2001) is used to define
the energy function for the MRF. With this function,

the energy corresponding to

1. A single-site clique is a constant times the label of

the pixel.

2. A two-sites clique is a constant negative quantity if

the two sites have the same label. If the two are

different, then the energy for that clique is a constant

positive quantity.
Aswewill see later, the objective is tominimize the sum

of energies of all the elements of the set of cliques, ensuring

that Xi, a particular realization of the field of labels X , is

smooth. However, the field X representing the segmented

image must also be faithful to the measured data (the

micrograph). Hence, we define a model of the image that

should be integrated with the MRF model.

5.1.3. The image model

There are two random fields involved in the model of

the image. The random field Y represents the observed

image. Y is a random field that does not exhibit any

neighborhood relationships, i.e., the random variables

yi are independently distributed. The micrograph is a

realization y of Y .
The random field X represents the segmented image

and is assumed to exhibit MRF properties. The state of

X is not observable. Given the state of Y , we wish to

obtain the state of X . Furthermore, the two fields X and

Y are coupled through a dependency (called emission

distribution) where the parameters of the distribution of

the random variable yi depend on the label assigned to
the random variable xi. It may be recalled that the re-
lation between yi and xi is

f ðyijxi ¼ ‘Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2pr2

‘

p exp

(
� ðy � l‘Þ

2

2r2
‘

)
: ð13Þ

It is also assumed that given the label xi of Xi, the

value taken up by the random variable Yi is independent
of the values of other Xi�s

P ðyjxÞ ¼
Y
i2S

PðyijxiÞ: ð14Þ

Hence

pðyijxNi ; hÞ ¼
X
‘2L

f ðyijxi ¼ h‘Þ pð‘jXNiÞ; ð15Þ

where h ¼ fh‘ ¼ fl‘; r‘g; 8‘ 2 Lg.
Figs. 7(A) and (B) illustrate the relationship between

the label field X and the image field Y . Labels from the

set {0,1} have been assigned to the pixels of X in

Fig. 7(A). For any pixel Xi in the label field X the in-

tensity at the corresponding pixel Yi in Y follows a

Gaussian distribution with its parameters indexed by

the label. i.e., Xi ‘‘emits’’ Yi. Thus, the intensities in the
image field Y are distributed according to a Gaussian

distribution with parameters from the set fðl0; r0Þ;
ðl1; r1Þg depending whether Xi is 0 or 1.

5.1.4. MRF estimation

The aim is to obtain the most likely realization of

the segmentation field X given the observed field Y
(the micrograph). If we represent the true labelling of the

MRFX by x̂x andan estimate of it by x�, then themaximum

a posteriori (MAP) estimate of x can be given by

x̂x ¼ argmax
x2X

fP ðyjxÞP ðxÞg ð16Þ

But we know that

P ðxÞ ¼ 1

Z
expð�UðxÞÞ

and

P ðyjxÞ ¼
Y
i2S

pðxijyiÞ

¼ 1ffiffiffiffiffiffi
2p

p exp

 
� ðyi � l‘Þ

2

2r2
‘

� logðrxiÞ
!
: ð17Þ

Hence maximizing P ðyjxÞPðxÞ is equivalent to mini-

mizing

UðxÞ þ UðyjxÞ;

where,

UðyjxÞ ¼
X
i2S

ðyi � lxiÞ
2

2r2
xi

"
þ logðrxiÞ

#
: ð18Þ

Hence we need to find particular values for the field

of random variables Xi such that the above function is



Fig. 7. An illustration of the relation between the image field and its corresponding label field. (A) The label field, X . (B) The image field, Y .
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minimized. A semi-optimal solution for minimization of

this expression is obtained using the iterated conditional

modes (henceforth I.C.M.) algorithm proposed by Besag

(1986). The algorithm is based upon an iterative local
minimization strategy where given the data, y, and the

other labels xðkÞS�i, the algorithm sequentially updates

each xðkÞi into xðkþ1Þ
i by minimizing Uðxijy; xS�iÞ.
5.2. Expectation maximization

Expectation maximization (Dempster et al., 1977)

(henceforth E.M.) is a standard technique to estimate
the parameters of a model when the data available are

insufficient or incomplete. We start with an initial guess-

estimate of the parameters and obtain an estimate of the

‘‘incomplete data’’ using these parameters. Once the

‘‘complete data’’ (along with some artificial data points)

become available, the parameters of the model are es-

timated again to maximize the probability of occurrence

of the ‘‘complete data’’. Successive iterations result in
increasingly more refined estimates of the parameters.

Let hð0Þ be the initial estimate of the parameters of the

model. The E.M. algorithm consists of two major steps

(Moon, 1996)

Step 1: expectation—Calculate the expectation with

respect to the unknown underlying variables using

the current estimate of the variables, conditioned on

the observations

QðhjhðtÞÞ ¼ E log P ðx; yjhÞjy; hðtÞ
h i

¼
X
x2X

P ðxjy; hðtÞÞ log P ðx; yjhÞ: ð19Þ

In the above equation, t is an variable representing a
particular iteration of the algorithm, Q is a function
of the parameters set h conditioned on the parameter

set obtained in the previous iteration and Eð�Þ is the

expectation function.

Step 2: maximization—Calculate the new estimate of
the parameters

hðtþ1Þ ¼ argmax
h

QðhjhðtÞÞ: ð20Þ

The equations describing the application of E.M. to the

image model are

lðtþ1Þ
‘ ¼

P
i2S P

ðtÞð‘jyiÞyiP
i2S P

ðtÞð‘jyiÞ
ð21aÞ

and

rðtþ1Þ
‘

� �2
¼
P

i2S P
ðtÞð‘jyiÞðyi � l‘Þ

2P
i2S P

ðtÞð‘jyiÞ
; ð21bÞ

where

P ðtÞð‘jyiÞ ¼
gðtÞðyi; h‘ÞP ðtÞð‘jxNiÞ

pðyiÞ
: ð21cÞ

P ðtÞð‘jxNiÞ involves the MAP estimation as described

earlier. The intermediate steps are described in detail in

Zhang et al. (2001).

The refinement may be seen as an iterative optimi-

zation procedure where the parameters, namely l0, r0,
l1, r1, and labels of the label field X are estimated using

the E.M. algorithm. At this point it must be reempha-
sized that the iterative step of E.M. includes I.C.M.

(Besag, 1986) which is a local optimization algorithm.

Hence the initialization becomes a critical component of

this technique. As illustrated in Figs. 8 and 12(D) and

(E), the iterative refinement does not seem to affect the

resulting segmentation substantially.



Fig. 8. The effect of HMRF segmentation for an MRI image. (A) The MRI scan after anisotropic diffusion. (B) The image after initialization during

the HMRF segmentation procedure. (C) The image after segmentation. (D) The Histogram of the pixel intensity of the sample image (A).
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6. The HMRF-EM segmentation algorithm

First, we give an informal description of the method

illustrated in Fig. 9 and then present the algorithm in

detail. It is common practice to de-noise a noisy image

before processing it for detection of cues such as edges.

Very frequently some form of isotropic smoothing, e.g.,

Gaussian smoothing is used to achieve this. However, as
noted earlier, such a method of smoothing leads to

blurring of the important cues such as edges in addition

to smoothing of the noise. Anisotropic diffusion (Perona

and Malik, 1990; Weickert, 1998) is a form of smoothing

that dampens out the noise while keeping the edge cues

intact. Following is a stepwise description of the particle

identification procedure.

1. The image is split into rectangular blocks that are
roughly twice the size of the projection of a particle.

This is done to reduce the gradient of the background

across each processed block. A high gradient degrades

the quality of the segmentation process carried out

in Step 3. The gradient of the background affects the

algorithm in the following ways:
(a) The initialization is based solely on intensity histo-

gram which encode only the frequencies of occur-

rence of any pixel intensity in the image. Due to

the presence of a gradient, the contribution to the

count of an intensity for example, may come from

the background of a darker region, as well as from

the inside of a projection of a virus in a brighter re-

gion. When the initialization is done for the entire
image it performs poorly, as seen in Fig. 14.

(b) The parameters l0, r0, l1, r1 are fixed for an im-

age. However, as illustrated in Fig. 10, they are

not the true parameters for intensity distribution

across the whole image. The means and variances

of pixel intensities are significantly different across

the image due to the presence of the gradient.

Cutting the image into blocks ensures a lack of
drift in these parameters within each block.

An overlap among neighboring blocks is maintained.

The size of overlap is the number of iterations of an-

isotropic diffusion. This is done to ensure the presence of

pixel intensity information at the edges of the blocks

during anisotropic diffusion filtering.



Fig. 9. The HMRF/EM-based automatic particle identification procedure introduced in this paper.
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2. As a pre-processing step individual blocks are fil-

tered by means of anisotropic diffusion. Such filtering

ensures that ‘‘edges’’ are preserved and less affected by

smoothing (see Figs. 3(A) and (B)). The edge stopping
function is

gðrIÞ ¼ e�ðkrIk=KÞ2 : ð22Þ
For each block we run 5 iteration of the algorithm.

K ¼ 0:2 to ensure the stability of the diffusion process.

3. The blocks filtered through the anisotropic diffu-

sion based filter are segmented using the HMRF meth-

od. The following steps are taken for segmentation.

(a) The initialization of the model is done using a
discriminant measure based thresholding meth-

od proposed by Otsu (1979). The threshold is

found by minimizing the intra-class variances

and maximizing the inter-class variances. The

resulting threshold is optimal (Otsu, 1979). Pix-

els with intensities below the threshold are

marked with the label 1 indicating that they

belong to the particle projection. The remain-
ing pixels are marked with the label 0. This
initialization is refined using the MRF based

model of the image in Step 3(b).

(b) To refine the label estimates for each pixel within

the MAP framework, we use the expectation max-
imization algorithm. A second order neighbor-

hood, as the one in Fig. 6, is used. To compute

the potential energy functions for cliques we use

a auto logistic model. Four iterations of the algo-

rithm are run for each block. The result of the seg-

mentation is a binary image with one intensity for

the particle projection and the other for the back-

ground.

6.1. Boxing

Boxingmeans to construct a rectangle with a center co-

located with the center of the particle. The segmentation

procedure outlined above can be followed by different

boxing techniques.We now discuss briefly the problem of

boxing for particles with unknown symmetry.
Boxing particles with unknown symmetry is consider-

ably more difficult than the corresponding procedure for



Fig. 10. The effect of the gradient of the pixel intensity in a micrograph. The variation of the mean intensity of the background pixels across the

micrograph image. The mean intensity of pixels within the projections of virus have a similar variation.
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iscosahedral particles. First, the center of a projection is

well defined in case of icosahderal particle, while the

center of the projection of an arbitrary 3D shape is more
difficult to define. Second, the result of pixel labelling, or

segmentation, is a shape with a vague resemblance to the

actual shape of the projection. Typically, it consists of one

or more clusters of marked pixels, often disconnected

from each other, as we can see in Fig. 7(A). Recall that

when the shape of the projection is known we can simply

run a connected component algorithm, like the one de-

scribed in Martin et al. (1997), and then determine the
center of mass of the resulting cluster. In addition, we run

a procedure to disconnect clusters corresponding to par-

ticle projections next to each other.

The post-processing of the segmented image to achieve

boxing involves morphological filtering operations of

opening and closing (Soille, 1999). These two morpho-

logical filtering operations are based on the two funda-

mental operations called dilation and erosion. For a
binary labelled image, dilation is informally described as

taking each pixel with value �1� and setting all pixels with

value �0� in its neighborhood to the value �1.� Corre-
spondingly, erosionmeans to take each pixel with value �1�
in the neighborhood of a pixel with value �0� and re-setting
the pixel value to �0.�The term ‘‘neighborhood’’ here bears

no relation to the therm ‘‘neighborhood’’ in the frame-

work of Markov Random Field described earlier. Pixels

marked say as ‘‘1,’’ separated by pixels marked as ‘‘0’’

could be considered as belonging to the same neighbor-

hood if they dominate a region of the image. The opening
and closing operations can then be described as erosion

followed by dilation and dilation followed by erosion,

respectively.

The decision of whether a cluster in the segmented

image is due to noise, or due to the projection of a particle

is made according to the size of the cluster. For an ico-

sahedral particle, additional filtering may be performed

when the size of the particle is known. Such filtering is not



Fig. 11. (A) Portion of a micrograph of frozen-hydrated Ross river virus. (B) The histogram of the pixel intensities for the image in (A). (C) The

micrograph after anisotropic diffusion filtering. (D) The micrograph after the initialization step of HMRF. (E) Segmented micrograph. (F) Boxed

particles in the micrograph.
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possible for particles of arbitrary shape. A fully automatic

boxing procedure is likely to report a fair number of false
hits, especially in very noisy micrographs.

New algorithms to connect small clusters together

based upon their size and the ‘‘distance’’ between their

center of mass must be developed. Without any prior

knowledge, about the shape of the particle boxing poses

tremendous challenges. It seems thus natural to inves-

tigate a model based boxing method, an approach we

plan to consider next.
The boxing of spherical particles in Figs. 11–13 in

Section 7 is rather ad hoc and cannot be extended for

particles of arbitrary shape. We run a connected com-

ponent algorithm and then find the center of the particle

and construct a box enclosing the particle.
7. The quality of the solution and experimental results

We report on some results obtained with the method

of automatic particle identification presented in this

paper. Our first objective is a qualitative study based

upon visual inspection of several micrographs and the

results of particle ‘‘boxing.’’ We discuss several such

experiments; in each case we present six images: the

original, a pixel intensity histogram of the image, the
image after preprocessing with anisotropic diffusion,
image after the initialization step, the segmented image,

and the image with particles boxed.
Once we are convinced that the method performs

reasonably well, we consider a quantitative approach.

The performance of a particle selection algorithm is

sometimes benchmarked versus manual pickings by a

trained human particle picker, although this metric is

not universally accepted. The metrics used in this case

are: the false positives rate and the false negatives rate.

False positives occur when the algorithm ‘‘discovers’’
false or unwanted particles (‘‘junk’’). False negatives

occur when the algorithm fails to identify genuine par-

ticle projections. The rates are given by the ratio of the

corresponding false positive or false negative events to

the total number of particles picked up by an experi-

enced human particle picker.

The experiments we report were performed on mi-

crographs of frozen-hydrated Ross river virus and the
Chilo Iridescent virus (CIV) samples recorded in an

FEI/Philips CM200 electron microscope. The results for

a micrograph of Ross river virus is presented in Fig. 11.

The size of the micrograph image is 5320� 5992 pixels.

The HMRF-EM segmentation algorithm followed by

boxing as described earlier requires �1300 s to complete.

The results for a micrograph of the Chilo Iridescent

virus (CIV) is presented in Fig. 12. The size of the
micrograph is 5425� 5984 pixels. The HMRF-EM



Fig. 12. (A) A portion of a micrograph of frozen hydrated sample of Chilio Iridescent virus (CIV). (B) The histogram of the pixel intensities for the

image in (A). (C) The micrograph after anisotropic diffusion filtering. (D) Micrograph after the initialization step of HMRF. (E) Segmented mi-

crograph. (F) Boxed particles in the micrograph.
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segmentation algorithm followed by boxing requires

�1250 s to complete. The images were processed on a

1.6GHz Pentium IV system with 512MB main memory

running Linux

Table 1 compares results obtained by manual selec-

tion and by the use of the HMRF algorithm. The present

implementations of the HMRF algorithm produce a

rather large false positive rate �17% and false negative
rate�8%. The primary concern is with the relatively high

false positive rate because incorrectly identified particle

projections can markedly effect the quality of the overall

reconstruction process.

Automatic selection of particle projections from a

micrograph requires that the results be obtained rea-

sonably fast. Hence, in addition to analysis pertinent to

the quality of the solution, we report the time required
by the algorithm for different size and number of par-

ticles in a micrograph. Table 2 lists the time devoted to

different phases of our algorithm and demonstrates that

pre-processing and segmentation account for 97–99%

of the computing time. Since the pre-processing step

has not yet been optimized, we are confident that sig-

nificant efficiency can be realized after further algorithm
development. Indeed, the rather large number of false

positives (Table 1, column 4), demonstrates an inability

to currently distinguish particles from junk. Clearly, the

existing algorithm is unsuitable for real time electron

microscopy which would allow the microscopist to re-

cord a very low magnification image at very low electron

dose and from which it would be possible to assess

particle concentration and distribution to aid high
magnification imaging.

Finally, Fig. 13 shows the results of applying our

procedure to an asymmetric structure, the prolate capsid

of the bacteriophage T4.
8. Conclusions and future work

The HMRF particle selection algorithm does not

assume any particular shape or size for the virus pro-

jection. Even though most of our experiments were

performed with micrographs of symmetric particles the

one illustrated in Fig. 13 for an asymmetric particle,

gives us confidence in the ability of our algorithm to

identify particles of any shape.



Fig. 13. (A) Portion of a micrograph of frozen-hydrated bacteriophage T4 prolate virus. The virus does not have icosahedral symmetry. (B) The

histogram of the pixel intensities for the image in (A). (C) The micrograph after anisotropic diffusion filtering. (D) Micrograph after the initialization

step of HMRF. (E) Segmented micrograph. (F) Boxed particles in the micrograph.

Table 2

Time in seconds for the main processing steps of HMRF segmentation followed by the boxing algorithm based on projection size

Name of virus Image size Anisotropic

filtering

Initialization MRF

segmentation

Boxing Total

CIV 1174� 940 17 3 20 2 42

Ross river virus 2340� 2235 281 28 432 15 756

CIV 5457� 6000 560 43 701 28 1332

CIV 8768� 11 381 2102 208 2804 142 5256

The programs were run on a 1.6GHz Pentium IV system with 512MB main memory running Linux.

Table 1

The quality of the solution provided by the projection size based boxing algorithm on micrographs of viruses segmented using HMRF-EM algorithm

Name of virus Number of particles detected

manually

Number of particles detected

by MRF

False positives False negatives

CIV 277 306 55 26

Ross river 172 198 43 17

T4 prolate 95 104 16 7
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However, several aspects of particle selection pro-
cessing demand improvement. First, the algorithm is

computationally intensive. The time for automatic par-

ticle selection is hundreds of seconds for a

6000� 6000 pixel micrograph with some 50–70 particles.

A significant portion of the time is spent in obtaining

an optimization for the MRF. This can be overcome if a

multi-scale technique is adopted. With a multi-scale

technique, a series of images of smaller size, with larger
pixel dimensions, are constructed. The optimization

starts with the smallest size image, corresponding to the

largest scale. The results are propagated to the optimi-

zation for the same image but of larger size, at next

scale. Multi-scale MRF techniques are already very

popular within the vision community (Bouman and

Shapiro, 1994).

More intelligent means of distinguishing a projection
of the virus from the projection due to noise could be
Fig. 14. The effect of initialization for a micrograph with a pronounced grad

river virus. (B) The micrograph after anisotropic diffusion. (C) The effect

micrograph in (A). (D) The segmented micrograph.
introduced such as some discrimination method based
on features of the projection more informative than

mere projection size. Such features can be extracted

from projections of the lower resolution 3D map of the

particle.

The ICM algorithm performs a local optimization of

the Markov random field and it is very sensitive to ini-

tialization. Global optimization methods like simulated

annealing (Kirkpatrick et al., 1983) are likely to produce
better results, but would require a fair amount of CPU

cycles and, thus, increase the processing time.

The effect of initialization for the micrograph in

Fig. 14(A) with a pronounced gradient of the back-

ground is captured by the image in Fig. 14(B). The final

segmentation for the micrograph in Fig. 14(A) is pre-

sented in Fig. 14(C).

High pass filtering may be used to remove the back-
ground gradient. However, this does not perform very
ient. (A) A portion of an original micrograph of frozen-hydrated Ross

of the initialization for the HMRF segmentation algorithm for the
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well if the background has a steep gradient. The other
possible solution is to work on smaller regions where the

background gradient is expected to vary gradually. Still

another way to work around this is to use a multi-scale

technique, the solution we are currently working on.

Current work is focussed on the following problems:

1. Construct a better ‘‘edge stopping’’ function for the

anisotropic diffusion equation to improve noise

smoothing operations.
2. Use a multi-scale Markov random field to reduce the

computation time and make the algorithm more ro-

bust to initialization.

3. Use low resolution 3D reconstruction maps to en-

hance the identification of particles and their distinc-

tion from ‘‘junk.’’

Alone, the metrics discussed in this paper does not

allow us to compare different techniques. To reliably
compare various automatic particle identification

methods we need a standard benchmark. Once the

benchmark becomes available, researchers proposing a

new algorithm may test it using benchmark micrographs

and draw conclusions regarding the results produced by

the new algorithm versus other algorithms.

This standard benchmark should consist of:

(a) a set of micrographs as well as meta-information
about each micrograph,

(b) procedures in several programming languages to

read an image into a two-dimensional array, and

(c) a database of results obtained for each micrograph.

The results should be in some standard format to al-

low a rapid comparison between different methods.

These results should refer to the quality of the

solution as well as the time required to process the
micrograph.

The meta-information available for each micrograph

should include items such as

(i) the size of the image,

(ii) the ‘‘true’’ number of particles present in the micro-

graph, and the coordinates of the ‘‘box’’ for each

particle,

(iii) the noise characterization of the micrograph,
(iv) the contrast level, derived from the histogram of the

micrograph,

(v) a measure of the non-uniformity of the layer of ice

in the image, possibly given by a gradient function,

(vi) information regarding the type of the microscope

and the experimental setup used to collect the

image.

The metrics used to compare different methods
should summarize the results of a comparative analysis

of a new method applied to all images from the bench-

mark suite. A non-exhaustive list of such metrics

includes

(a) The expected value and the variance of ratio of par-

ticle identified by the method versus the number of

‘‘true’’ particles.
(b) The expected value and the variance of the number
of ‘‘false positives’’.

(c) A measure of the quality of the solution, for example

the average error in determining the center of each

particle.

We are in the process of developing such a bench-

mark suite. Our effort can only be successful if sup-

ported by the entire community with additional images

as well the as results obtained with different methods.
Ideally, the source code for each method should be made

available, so the results obtained by an individual can be

confirmed by other researchers.

Once a database of such results is available, then we

can identify the method(s) best suited for automatic

identification for different classes of micrographs.

It seems reasonable to assume that given a large

collection of micrographs, different automatic identifi-
cation methods will perform differently on different im-

ages of the benchmark suite. One method is likely to

outperform others on images with some characteristics

and, in turn, be outperformed by other methods on

images with different characteristics. Ultimately, hybrid

techniques are likely to prevail.
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