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We report the development of two computational methods to assist
density map interpretation at intermediate resolutions: sheettracer for
building pseudo-Ca models of b-sheets, and a deconvolution method for
enhancing features attributed to major secondary structural elements.
Sheettracer is tightly coupled with sheetminer, which was developed to
locate sheet densities in intermediate-resolution density maps. The results
from sheetminer are used as inputs to sheettracer, which employs a multi-
step ad hoc morphological analysis of sheet densities to trace individual
strands of b-sheets. The methods were tested on simulated density maps
from 12 protein crystal structures that represent a reasonably complete
sampling of sheet morphology. The sheet-tracing results were quanti-
tatively assessed in terms of sensitivity, specificity and rms deviations.
Furthermore, sheettracer and the deconvolution method were rigorously
tested on experimental maps of the l2 protein of reovirus at resolutions
of 7.6 Å and 11.8 Å. Our results clearly demonstrate the capability of
sheettracer in building pseudo-Ca models of b-sheets in intermediate-
resolution density maps and the power of the deconvolution method in
enhancing the performance of sheettracer. These computational methods,
along with other related ones, should facilitate recognition and analysis
of folding motifs from experimental data at intermediate resolutions.
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Introduction

In this post-genomics era,1 structural biologists
are faced with the challenges of analyzing increas-
ingly complex biological systems, many of which
only yield density maps at low to intermediate-
resolution.2 This is particularly true for single-
particle electron cryomicroscopy (cryo-EM) of
supermolecular complexes.3 – 11 In X-ray crystallo-
graphic structure determinations, crystals of large
complexes often fail to diffract beyond 4 Å. More-
over, even for some well-diffracting crystals, the
structures have to be solved in a stepwise process
at progressively enhanced resolutions before
atomic resolution is achieved. This was certainly

true for the 50 S ribosomal subunit, which was
solved first at 9 Å, and then at 5 Å, and finally at
2.4 Å.12 – 14 In all such studies involving inter-
mediate-resolution density maps, it is nearly
impossible to build reasonably accurate atomic
models with conventional methods. However, it
would be enormously helpful if the locations of
major secondary structural elements could be
reliably defined, and this in turn would enable the
construction of accurate pseudo-atomic models.
Such models can facilitate structure determination
to higher resolutions and also assist further bio-
chemical studies and functional interpretation. In
fact, significant insights into the architecture and
organization of structures are often obtained once
major secondary structural elements are located.
a-Helices and b-sheets constitute the major

secondary structural elements in proteins. It has
recently been shown that a-helices, which have
an approximately cylindrical shape, can be located
in intermediate-resolution density maps via a
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five-dimensional cross-correlation search.15 How-
ever, b-sheets are much more difficult to identify
in intermediate-resolution density maps because
they usually do not adopt a single, characteristic
shape. Moreover, variations in the number of
strands and the length of each strand result in
b-sheets of various sizes and shapes.

Despite such challenges, we have identified a set
of unique morphological features that can be used
to assist the location of b-sheets at intermediate
resolutions. This process is carried out in two
steps using the programs sheetminer and sheet-
tracer. We have recently shown that sheetminer is
able to locate reliably the regions belonging to
b-sheets in intermediate-resolution density
maps.16 Here, we describe the development of
another tool, sheettracer, that traces pseudo-Ca

atoms in the b-sheet density maps output by
sheetminer.16 A flowchart that depicts the overall
procedure of sheettracer is presented in Figure 1.

The integration of sheetminer16 and sheettracer
with other methods such as helixhunter15 will
enable the building of pseudo-Ca traces in inter-
mediate-resolution density maps obtained from
any experimental measurements. This in turn will
enhance the interpretation of structural data at
intermediate resolutions. These methods offer a
distinct advantage in that they significantly
enhance model building experiments by narrowing
the volume of a density map that must be searched

and eliminating the need for global, brute-force
fitting procedures.

Results

Step-wise discerning of b-strands

The sheetminer16 program outputs clusters of
voxels, with each cluster delineating a thin, but
continuous volume of density presumed to
represent a single b-sheet. sheettracer then
employs a multi-step process to build pseudo-Ca

traces in each identified sheet. These steps are first
illustrated using as an example one b-sheet of the
apical domain of the molecular chaperonin GroEL,
also known as the minichaperone17 (PDB code
1fy9).

In the first step, a local peak filter was applied to
each cluster of voxels (Figure 2(a)) output by sheet-
miner to identify voxels that are most likely
involved in forming the backbones of individual
strands (Figure 2(b)). The local peak-filtering
algorithm emphasizes high local density values
and thereby adjusts to variations in the magnitude
of densities throughout the map, which permits,
for example, effective selection of backbone voxels
even in regions of relatively weak density. The
next step involved condensing the selected voxels
using local first principal component axis projec-
tion, which acts to enforce the voxel distribution
along the longest axis and one meant to coincide
with a strand backbone (Figure 2(c)). This process
results in a significantly narrowed distribution of
voxels and makes subsequent local linearity filter-
ing more efficient. Surviving voxels were then sub-
jected to a local linearity filter that picks backbone
voxels exhibiting properties of good local linearity
(Figure 2(d)). This filtering method acts to remove
inter-strand voxels and results in a significantly
narrowed distribution of backbone voxels.
k-Segments clustering18 was employed in the next
step to group voxels into smaller subsets, each of
which is expected to represent one part of a
b-strand (Figure 2(e)), and subsequently all subsets
belonging to the same strand were merged. At this
point, each cluster of voxels represents an inde-
pendent b-strand and a pseudo-Ca trace was then
built for each strand.

Discerning b-strands and building pseudo-Ca

traces in p21H-ras

The p21H-ras molecule, which contains a single,
six-stranded b-sheet, was used to test sheettracer.
Analysis was performed on a relatively thin, but
continuous, sheet density map produced by sheet-
miner from a map of the protein simulated at 6 Å
resolution (Figure 3(a)). A simulated density map
was obtained from the crystal structure using the
EMAN program 19. Several steps of pre-processing,
as described in Methods, led to a set of points that
represent the topological features of the sheet

Figure 1. Flowchart for the computational procedure
of sheettracer in intermediate-resolution density maps.
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(Figure 3(b)). The k-segments algorithm18 was then
used to separate these points into groups. Cluster
cleaning and merging were then applied to each
group of points to ensure that each group
represents an independent strand (Figure 3(c),
groups are separately colored). Such groupings of
points permitted us to then make pseudo-Ca traces
for all six strands (Figure 4(b)).

Discerning b-strands and building pseudo-Ca

traces in 12 proteins

As a further test of the ability of sheettracer to
discern individual b-strands in sheet densities of
different morphology, we examined simulated
density maps of 12 structurally unrelated proteins
whose high-resolution crystal structures are avail-
able from the Protein Data Bank (PDB). This set of
protein structures was chosen because the number,
size, and shape of b-sheets vary widely among
them and therefore they should provide a reason-
ably complete sampling of known b-sheet mor-
phologies. Four of the structures contain a single
b-sheet with varying size and number of strands:
carboxypeptidase A20 (PDB code 5cpa), p21H-ras21

(PDB code 121p), flavodoxin22 (PDB code 1ag9),
and VP1 protein of human rhinovirus 1423 (PDB
code 4rhv). Four contain multiple independent
b-sheets: the GroEL minichaperone17 (two sheets,
PDB code 1fy9), human class I major histocompati-
bility antigen24 (three sheets, PDB code 1duz),
horse liver alcohol dehydrogenase25 (five sheets,
PDB code 6adh), and MoFe protein of nitrogenase26

(six sheets, PDB code 1h1l). The last four contain
rich b-motifs such as the b-barrel and b-propeller:
bacteriophage P22 tailspike protein27 (PDB code
1tsp), aldose reductase28 (PDB code 1ads), retinol-
binding protein29 (PDB code 1aqb), and
phosducin30 (PDB code 1b9x).

The sheet-tracing results on the 12 proteins are
shown in Figure 4 with the built pseudo-Ca traces
superimposed on the crystal structures. The results
were statistically analysed in terms of three
separate measures: sensitivity, specificity, and
root-mean-square (rms) deviations. As had simi-
larly been used in quantitative analysis of sheet-
mining results,16 sensitivity refers to the probability
of correctly identifying true sheet Ca-atoms,
whereas specificity defines the probability of cor-
rectly identifying non-sheet Ca-atoms. The rms
deviation is calculated by computing the average
distance of each built pseudo-Ca-atom from its
closest sheet Ca-atom in the superimposed crystal
structure. The average sensitivity and specificity
for all 12 proteins are 79.5% and 96.3%,
respectively (Table 1). Moreover, regardless of
which b-sheet morphology is tested, the rms
deviations always remain smaller than 2.0 Å, with
an average of 1.54 Å (see footnote to Table 1 for
more details concerning the calculation of rms
deviation). Given the limited resolution upon
which our analysis was based, such statistical
results of trace building seem quite promising.
Note that sheettracer is unable to specify strand
directions, consequently these have been assigned
according to the known X-ray structures (Figure 4).

Figure 2. Step-wise processing of sheet density maps to discern individual b-strands, using the sheet in the GroEL
minichaperone as an example. (a) Sheet density identified by sheetminer shown in voxels. (b) Selected voxels by
local peak filter. (c) Surviving voxels after local first principal component axis projection using the voxels in (b) as
input. (d) Surviving voxels after local linearity filtering using the voxels in (c) as input. (e) Clustered backbone voxels
after k-segments processing. The lines are the fitted segments (the first principal component axes).

Figure 3. Sheet-tracing results based on a 6 Å simulated density map of p21H-ras. (a) Isolated thin, but continuous,
sheet density map output from sheetminer. (b) Backbone voxels for delineating the strands. (c) Clusters of voxels
after k-segments processing. Each cluster represents one strand (in a different color).
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Figure 4. Sheet-tracing results for all 12 proteins based on 6 Å simulated density maps. The pseudo-Ca traces
depicted in darker color are superimposed on the X-ray structures of the proteins shown in lighter color using
MOLSCRIPT software.51 The proteins are: (a) carboxypeptidase A; (b) p21H-ras; (c) flavodoxin; (d) VP1 protein of
human rhinovirus 14; (e) the GroEL minichaperone; (f) human class I major histocompatibility antigen; (g) horse liver
alcohol dehydrogenase; (h) MoFe protein of nitrogenase; (i) bacteriophage P22 tailspike protein; (j) aldose reductase;
(k) retinol-binding protein; and (l) phosducin. The arrows in the pseudo-Ca traces are artificially assigned based on
the crystal structures.
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A new method for deconvolution of
density maps

As demonstrated in the previous sections, we
can usually build the pseudo-Ca traces with
reasonable confidence, but mistakes do occur,
especially when maps at lower resolutions are
analysed. Therefore, to help enhance our ability to
build the pseudo-Ca traces in intermediate-
resolution density maps, we developed a new com-
putational method for deconvoluting the density
maps. The net result of deconvolution is to
enhance the features of secondary structural
elements in density maps. A simple example of
this is illustrated in Figure 5(a). The left panel
shows a synthetic two-dimensional (2D) geometri-
cal object and the middle panel shows the same
object contaminated with a level of noise that
nearly renders features in the original object
indistinguishable. The right panel shows the
results of a dramatic recovery of object features
after deconvolution is performed.

We then tested the method on a simulated 3D
density map (Figure 5(b)). A single b-sheet struc-
ture was blurred to 8 Å (Figure 5(b), left), at which
point a straightforward building of pseudo-Ca

traces became difficult. After deconvolution,
strands are more clearly resolved in the density
map (Figure 5(b), right). The subsequent building
of pseudo-Ca traces on the deconvoluted map was
a trivial process.

Experimental density maps of the l2 protein of
reovirus were then used to further test the decon-
volution method. To perform the test in a more sys-
tematic and self-consistent way, the cryo-EM
structures of reovirus have been reconstructed to
7.6 Å resolution from 7939 single-particle images
(100%-particle structure) and to 11.8 Å resolution
from a subset (12.5%) of the same particle images
(12.5%-particle structure). Two helices in the l2
protein that are distinct in the 100%-particle struc-
ture (Figure 6(a)) are bridged by density that
appears to interconnect the helices in the 12.5%-
particle structure (presumably owing to the higher

Table 1. Quantitative analysis of the sheet-tracing results at 6 Å

PDB
code

No.
total
Ca

No. sheet Ca

found by
STRIDE

No. true sheet
Ca found by
sheettracer

No. true sheet
Ca missed by

sheettracer

No. false sheet
Ca found by
sheettracer

Specificity
(%)

Sensitivity
(%)

rms
deviations

(Å)

5cpa 308 53 32 21 2 99.2 60.4 1.48
121p 167 47 42 5 2 98.3 89.4 1.51
1ag9 176 33 26 7 5 96.5 78.8 1.35
4rhv 209 85 82 3 2 98.4 96.4 1.54
1fy9 214 54 33 21 1 99.4 61.1 1.35
1duz 276 119 88 31 14 91.1 73.9 1.62
6adh 749 174 152 22 56 90.3 87.4 1.75
1h1l 998 140 113 27 14 98.4 80.7 1.65
1tsp 391 189 149 40 3 98.5 78.8 1.57
1ads 316 39 33 6 0 100.0 84.6 1.40
1aqb 176 82 58 24 5 94.7 70.7 1.49
1b9x 341 180 165 15 15 90.7 91.7 1.81

Average 96.3 79.5 1.54

The number of Ca-atoms of b-sheets in the crystal structures (third column) was determined by the method STRIDE.50 The sheet-
tracing results were based on 6 Å simulated density maps. The crystal structures were first superimposed on the simulated density
maps. The number of true sheet Ca-atoms found by sheettracer (fourth column) was then defined as the number of sheet Ca-atoms
in the atomic coordinates that spatially fall inside the sheet regions defined by sheettracer. The number of true sheet Ca-atoms missed
by sheettracer (fifth column) was defined as the number of sheet Ca-atoms in the atomic coordinates that spatially fall outside the
sheet regions defined by sheettracer. The number of false sheet Ca-atoms (sixth column) was defined as the number of non-sheet Ca-
atoms in the atomic coordinates that spatially fall inside the sheet regions defined by sheettracer. The specificity value (seventh
column) was calculated by the formula: 1 2 ðsixth column=ðsecond column 2 third columnÞÞ and the sensitivity value (eighth column)
was calculated by the formula: fourth column/third column. The rms deviations of built pseudo-Ca traces were derived from the
distance of each pseudo-Ca-atom to its nearest Ca-atom on b-strands in the superimposed crystal structures. This calculation was
only performed for found pseudo-Ca-atoms. Please note, for all the calculations, no sequence identity of Ca-atoms was concerned.
As a result, the rms deviation calculated here is not the same as the conventional rms deviation based on atomic structures. The nearly
perfect specificity values are the results of the multi-step denoising process implemented in sheettracer.

Figure 5. A new deconvolution
method. (a) A simple 2D example
of deconvolution. The left is the
original image, the middle is the
image rendered with noises and
the right is deconvoluted image.

(b) A 3D example for deconvolution (right) on a piece of b-sheet density blurred to 8 Å (left). The Ca traces of the
sheet (red) are superimposed on the density.
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noise level) (Figure 6(b)). Deconvolution of the
lower resolution density map clearly yields a map
with distinct densities for the helices (Figure 6(c)).

Deconvolution and trace building in simulated
density maps of 12 proteins

As has been demonstrated in previous sections,
sheettracer is capable of building pseudo-Ca traces
in simulated maps limited to 6 Å resolution.
Attempts to trace Ca-paths in lower resolution
maps generally failed. To test its effectiveness in
assisting sheet-tracing, we explored the utility of
combining our deconvolution method with sheet-
tracer to enable sheets to be traced at lower
resolutions. The results of tracing with simulated
maps of p21ras at 8 Å and 9 Å are shown in
Figure 7. The sensitivity, specificity and rms
deviations are 76.6%, 98.3%, 1.65 Å and 70.2%,
96.7%, 1.73 Å for the 8 Å and 9 Å data, respectively.
We then applied the same procedure to simulated
density maps of the other 11 proteins at 8 Å, and
obtained average sensitivity, specificity and rms
deviations of 71.3%, 93.8% and 1.77 Å, respectively
(Table 2). These results clearly demonstrate that the

deconvolution method does enhance density
interpretation in sheettracer.

Deconvolution and trace building in
experimental maps of the l2 protein of reovirus

To test their applicability to real experimental
data, sheettracer and the deconvolution method
were employed to build pseudo-Ca traces in the
7.6 Å cryo-EM structure of the l2 protein of
reovirus,31 whose crystal structure has been solved
independently32 (PDB code 1ej6) and could be
used to validate the sheet-tracing results. The l2
protein has 16 b-sheets, 12 of which contain three
or more strands. The results of building pseudo-
Ca traces by sheettracer on the 7.6 Å map of l2
protein with and without deconvolution are
shown in Figure 8. With the exception of sheet 8,
the rms deviations of pseudo-Ca traces obtained
from the deconvolved maps are much better than
those obtained from the original map. Moreover,
deconvolution enhanced five additional sheets
(sheets 2, 6, 10, 14, and 15) for which pseudo-Ca

traces could not be built from the original maps
prior to deconvolution. The results of our tests
with simulated and real experimental data clearly
suggest that sheettracer and deconvolution
together provide a powerful approach to analyze
maps with unavoidable phase errors.

Discussion

Here, we report the development of two compu-
tational methods that can be used to assist density
interpretation at intermediate resolutions. These
include sheettracer for building pseudo-Ca models
of b-sheets, and a deconvolution method for
enhancing the features of secondary structural
elements. sheettracer is tightly coupled to
sheetminer,16 which was developed to locate sheet
densities in intermediate-resolution density maps.

Figure 6. The improved appearance of secondary structural elements in the experimental density map of the l2
protein of reovirus by the deconvolution. (a) The cryo-EM structure generated using 100% particle images (100%-
particle structure) highlighting the two well-separated helices. (b) The structure generated using 12.5% particle images
(12.5%-particle structure) in which the two distinct helices are wrongfully connected. (c) The deconvolution procedure
recovered the separation of these two helices in the 12.5%-particle structure.

Figure 7. Sheet-tracing results for p21ras at resolutions
of (a) 8 Å and (b) 9 Å after deconvolution. The built
pseudo-Ca traces of the sheets (blue) are shown on top
of the ribbon diagrams of the crystal structure (lighter
color).
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Simulated 6 Å density maps from 12 representative
protein crystal structures, encompassing a wide
range of sheet morphologies, were used to test
both programs. sheettracer successfully built
pseudo-Ca models in the sheet densities output
by sheetminer, with average values of 79.5%,
96.3% and 1.54 Å for sensitivity, specificity and
rms deviations, respectively. With even lower-
resolution (8 Å) simulated data, the deconvolution
method permitted sheettracer to build pseudo-Ca

models with average values of 71.3%, 93.8%
and 1.77 Å for sensitivity, specificity and rms
deviations, respectively. Furthermore, sheettracer
and the deconvolution method were rigorously
tested on experimental maps of the l2 protein of
reovirus at 7.6 Å and 11.8 Å resolutions. The results

of all tests consistently demonstrated the capabili-
ties of the sheettracer program and deconvolution
method to construct accurate pseudo-Ca models of
b-sheets in intermediate-resolution density maps.

sheettracer employs an ad hoc morphological
analysis of density maps based on two
observations: that protein main-chain density is
relatively higher in magnitude than that in side-
chains and that all neighboring b-strands are
parallel or nearly parallel. The former property
stimulates the use of local peak-filtering as a
means to select backbone voxels, whose geometri-
cal distribution helps define sheet morphology.
The latter property permits local first principal
component axis projection to condense the density
without losing intra-strand connectivity. In contrast

Table 2. Quantitative analysis of the sheet-tracing results at 8 Å

PDB
codes

No.
total
Ca

No. sheet Ca

found by
STRIDE

No. true sheet Ca

found by
sheettracer

No. true sheet Ca

missed by
sheettracer

No. false sheet
Ca found by
sheettracer

Specificity
(%)

Sensitivity
(%)

rms
deviations

(Å)

5cpa 308 53 34 19 6 97.6 64.1 1.59
121p 167 47 33 14 4 98.3 76.6 1.65
1ag9 176 33 24 9 6 95.8 72.7 2.37
4rhv 209 85 80 5 10 91.9 94.1 1.55
1fy9 214 54 36 18 3 98.1 66.7 1.56
1duz 276 119 77 42 12 92.4 64.7 1.86
6adh 749 174 129 45 43 92.5 74.1 1.84
1h1l 998 140 100 40 21 97.6 71.4 1.83
1tsp 391 189 127 62 24 88.1 67.2 1.61
1ads 316 39 23 16 8 97.1 59.0 1.80
1aqb 176 82 63 19 6 93.6 76.8 1.73
1b9x 341 180 122 58 28 82.6 67.8 1.84

Average 93.8 71.3 1.77

The sheet-tracing results were based on 8 Å simulated density maps using the combination of sheettracer and the deconvolution
method. The detailed calculation of sensitivity and specificity and the explanation of rms deviations can be found in the footnote to
Table 1.

Figure 8. Comparison of sheet-
tracing results in the 7.6 Å density
maps of the l2 protein of reovirus
with (yellow bar) and without
(blue bar) deconvolution. There are
a total of 16 b-sheets, 12 of which
are large (three-stranded or more)
and four are small (short two-
stranded). In all but one (sheet 8)
case, the deconvolution resulted in
smaller rms deviations relative to
the crystal structure than without.
Moreover, the deconvolution
brought up five additional b-sheets
(sheets 2, 6, 10, 14, and 15) for
which no pseudo-Ca traces could
be built on the original maps with-
out deconvolution.
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to other thinning schemes that only consider the
contacting neighbors, this local projection scheme
reinforces the linear distribution of voxels but sim-
ultaneously increases the distance between voxels
of different strands. The net result of this conden-
sation is a significantly increased efficiency in
k-segments clustering. It needs to be pointed out
that, although the lattice grid of the density map
may become broken by translocating voxels in con-
densation, the major topological features of the
voxel distribution are maintained and the pseudo-
Ca tracing can still be successfully performed on
clustered voxels.

At intermediate resolutions, it is impossible to
differentiate Ca-atoms from other backbone atoms.
Hence, it is reasonable to only use Ca-atoms to
model strand traces. For trace building, it is
required to define the end-point voxels that corre-
spond to the Ca-atoms at the N and C termini of a
b-strand. Based on the fact that the N and C-term-
inal Ca-atoms of a b-strand are the most distant
from each other within a b-strand, we define the
two voxels of the largest distance within a cluster
as the end-point Ca-atoms. The trace is built start-
ing from one of the end-point Ca-atoms and is
extended toward the second by an interval of
3.8 Å. Such a scheme can potentially introduce sys-
tematic errors ranging between 0 Å and 1.9 Å
along the strand axis. Along with these longi-
tudinal errors, strand curvature could introduce
lateral errors, since the k-segments clustering
algorithm uses a set of sequential straight lines to
approximate a curved structure. For those b-sheets
with highly twisted or curved strands, the traced
pseudo-Ca-atoms would exhibit larger rms
deviations relative to the real structures. In our
tests, the rms deviations between modeled
pseudo-Ca-atoms and the known sheet Ca-atoms
in the 12 control protein structures averaged
1.54 Å and 1.77 Å for the 6 Å and 8 Å simulated
density maps, respectively. The magnitude of
these deviations clearly indicates that the strands
and pseudo-Ca-atoms have been reasonably
accurately located.

The input to sheettracer consists of sheet density
maps identified by sheetminer from raw density
maps. Hence, the tracing generated by sheettracer
depends, at least in part, on the reliability of sheet-
miner. In general, the sensitivity of tracing results
is closely linked to the performance of sheetminer,
but the specificity of tracing results is always quite
good, which we attribute to the multi-step
denoising implemented in sheettracer. Moreover,
as is true for sheetminer, the performance of sheet-
tracer is also related to the size of b-sheets. sheet-
tracer generally performs better at tracing strands
in sheets when the strands are long and their num-
ber is large. This reflects, in part, the fact that the
identification errors tend to concentrate at the
edges of b-sheets. Similar constraints also occur in
helix-hunting algorithms where it is difficult to
precisely define helix length.15 However, this may
not be too problematic because the exact length of

secondary structural elements in high-resolution
structures can vary depending on which assign-
ment method is employed. Furthermore, identifi-
cation of folding motifs tends not to be critically
sensitive to the exact length of secondary structural
elements. Folding motifs are instead defined by the
overall spatial arrangement of secondary structural
elements. Indeed, within a given fold a particular
secondary structural element can vary consider-
ably in length for all the structures with the same
fold in the Structure Classification of Proteins
database.33,34

Our results have additionally clearly demon-
strated that the deconvolution method significantly
enhances one’s ability to build pseudo-Ca traces for
b-strands at relatively low resolutions. We
currently have no objective, quantitative measure
of how much the deconvolution method improves
the effective resolution. Rather, it is important to
emphasize that the criteria used to signify success
of the new methods are the improved effectiveness
and accuracy of building structural models into
density maps. For example, the deconvolution
method is effective because it extended our ability
to trace pseudo-Ca positions in simulated maps at
resolutions as low as 8–9 Å. Finally, it is note-
worthy that the deconvolution method is able to
enhance all secondary structural elements in both
simulated and experimental maps.

At this stage in our development of structural-
information tools, the sequence identity of amino
acid residues cannot be discerned purely based on
ad hoc morphological analysis of intermediate-
resolution density maps. Furthermore, the relative
orientations of the strands (parallel or anti-parallel)
cannot be discriminated. These represent the
largest obstacles in building a complete set of
atomic coordinates for any protein structure. How-
ever, some of these obstacles might be overcome or
circumvented by linking our methods with other
computational structure prediction methods.15,35 –38

Once all the pseudo Ca-atom positions are deter-
mined or predicted, energy calculations can be per-
formed to verify the validity of the pseudo-model
or to refine it to produce a more reasonable one.

Computational tools designed to help identify
and trace secondary structural elements in inter-
mediate-resolution density maps will likely prove
valuable for several reasons. First, the building of
pseudo-Ca traces will stimulate more targeted
biochemical and functional studies of biological
systems and will facilitate structure refinement at
higher resolutions. Second, the ability to build
pseudo-Ca traces in intermediate-resolution maps
has the potential to help identify novel protein
folds especially in instances where fast, automated,
screening procedures fail to yield crystals suitable
for high-resolution crystallographic studies.
The combination of our methods with related
ones15,35 – 38 will eventually make it feasible to reveal
folding motifs from diffraction data at intermediate
or lower resolutions. Third, the secondary
structural elements revealed by our and related
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methods15 will generate reliable landmarks for
docking atomic models of sub-components or
homology-derived models into intermediate-
resolution density maps of supermolecular com-
plexes. Docking accuracy is known to be signifi-
cantly improved if even just a few points inside a
density map can be reliably identified.39 Finally,
our sheet-searching methods offer a potential to
assist the deciphering of folding motifs in amyloid
fibrils,40,41 which are rich in b-sheets42 and for
which high-resolution crystal structures are not
available. Although current experimental data on
these fibrils are limited to 20–30 Å,40,41 a combi-
nation of improvements in the resolutions
achieved in experimental measurements along
with an enhanced ability to analyze lower-
resolution data with methods like ours will
eventually help provide new structural insights.

Methods

sheettracer traces individual b-sheets using the
relatively thin, but continuous, sheet density maps
output from sheetminer.16 The overall procedure of
sheettracer is shown in the flowchart in Figure 1.

Pre-processing of sheet density maps

The products from sheetminer16 are relatively thin
sheet densities containing clusters of voxels that are con-
tinuously distributed in space. Each cluster is presumed
to represent a single sheet. In order to discern the pos-
itions of individual strands in the sheet density, a set of
pre-processing steps is applied to each individual cluster.

Local peak filtering for selecting backbone voxels

Here, voxels are selected from each voxel cluster that
likely form the backbones of individual strands. Since
voxels close to strand backbones usually have higher
density values, the voxels assigned to the main chains
are selected based on their density values contained in
the original maps. However, because densities are
unevenly distributed across sheets, simply selecting a
desired number of voxels with the highest density values
would fail to represent the 3D structure of the sheet.
Hence, we developed a special local peak filtering
method that emphasizes high local density values and
identifies backbone voxels by comparing neighboring
voxels (Figure 9(a)).

Application of the local peak filter begins with assign-
ing a local-peak-count number to each voxel (initially set
to zero). For each voxel, the average density of all voxels

contained within a sphere of 3 Å in radius is calculated
and those voxels in the sphere with a density value
greater than the average have their local-peak-count
number increased by 1. The peak counting operation
loops over all voxels and assigns each voxel a local-
peak-count number. Upon completion of this process,
all voxels are sorted according to their local-peak-count
numbers. The top 50% of voxels with highest local-
peak-count numbers are categorized as backbone voxels,
whereas the lowest 50% are discarded. This method
reduces the effects of bias that might occur owing to
variations in density throughout the map and permits
selection of backbone voxels even in regions where the
density is relatively weak (Figure 9(a)). Indeed, this
method provides more robust results than can be
obtained using traditional bilateral filters (Figure 9(b)).

Local first principal component axis projection

Backbone voxels selected through use of the local peak
filter are then subjected to a local first principal com-
ponent axis projection, which increases contrast and
thereby facilitates subsequent selection operations. The
advantage of this projection procedure is that voxels are
not shuffled along the first principal component axis.
Instead, the voxel distribution along the longest axis,
coincident with the strand backbone, is emphasized. In
this procedure, each voxel is vertically projected to its
local first principal component axis, which is calculated
for voxels within a sphere of radius of 3 Å (Figure 10).
All subsequent analyses are performed with the trans-
located voxels. In doing so, the distribution of voxels is
significantly narrowed, which will make the subsequent
local linearity filtering more efficient.

Local linearity filtering

Based on the notion that genuine backbone voxels in
sheets ought to exhibit good linearity with other voxels
belonging to the same strand, this pre-processing step is
designed to further select backbone voxels based on
their local linearity.

For each selected backbone voxel, the local linearity is
examined to detect if the distribution is linear as would
be expected for real strands, or if the voxels are just
randomly distributed in a cloud due to noise in the
data. To analyze voxels in this way, we create a cylinder
(0.75 Å in radius and 8 Å in length), centered on each
voxel and large enough to encompass about two amino
acid residues, and a concord sphere with diameter
equal to the length of the cylinder. All possible cylinder
orientations are tested within the sphere to find the
orientation where the largest number of voxels are
included in the cylinder (Figure 11). The ratio of the
number of voxels in the cylinder to that in the sphere is
then calculated. A ratio approaching 1.0 suggests that
voxels are linearly distributed around the central voxel,

Figure 9. (a) A 1D example of a
local peak filter. (b) A 1D example
of a traditional biliteral filter. Both
in 1D and 3D examples, the local
peak filter has better performance
in identifying local peaks that is
critical to finding main-chain
densities in weaker regions.
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whereas smaller values indicate a more dispersed distri-
bution in this region. Any voxel with a ratio smaller
than 0.4 is discarded in our scheme.

k-Segments clustering

The k-segments algorithm18 is designed to separate
backbone voxels from different b-strands into different
groups so a pseudo-Ca trace can later be modeled into
each group. The algorithm employs an incremental pro-
cedure to find principal curves by fitting line segments
into the data space, which in this study is spanned by

the voxels. Principal curves are the non-linear generaliz-
ation of principal components that give a summarization
of the data in terms of a 1D space non-linearly embedded
in the data space.18 Intuitively, a principal curve “passes
through the middle of the (curved) data cloud”18

(Figure 12).
In k-segments clustering, a threshold cluster number

is set to stop the algorithm from inserting new clusters
once this number is exceeded. In our implementation of
k-segments clustering, we set this number equal to the
number of backbone voxels, which is directly correlated
with the number of amino acid residues in b-sheets.
A voxel to cluster ratio of 40:1 is empirically chosen to
produce about two amino acid residues per cluster. It is
notable that this ratio is only used to establish a stop
point for the algorithm, and the actual size of clusters
can vary greatly. We have also learned that good per-
formance is generally obtained if the length of the first
principal component is set to 2s centered at the centroid
of the cluster, where s2 is the variance of the distance
between voxel projections to the centroid along the first
principal component axis.

Cluster cleaning and evaluation

The k-segments clustering yields several voxel clusters
along with their first principal component axes. Ideally,
each cluster will represent a single strand or part of one
strand. However, clusters sometimes will contain voxels
from separate strands and also voxels that do not belong
to a strand and may have arisen from noise in the data.
Hence, additional filtering operations are performed to
remove or reduce these artifacts.

Breaking up mixed clusters

Density maps that contain very curved local structures
can prove problematic because they may lead the k-seg-
ments algorithm to generate clusters with a mixture of
voxels from different strands. To help identify
problematic clusters, the program OPTICS43 is used to
analyze each cluster and check the reachability between
voxels within the same cluster. If the reachability
gap exceeds 2 Å in any cluster and a voxel from another
cluster is within 2 Å of the two voxels separated by this
gap, the cluster is subdivided into two clusters at the
interface of the gap. The effect of this procedure is to
break up all mixed clusters into smaller, independent
clusters that can subsequently be merged with other
clusters that belong to the same strand.

Detection and removal of spurious voxels

Typically, spurious voxel clusters, which we attribute
to noise in the data, appear to be neither parallel nor
semi-parallel with any other clusters, whereas the back-
bones of two neighboring strands in genuine b-sheets
are parallel or semi-parallel and separated by about 4.5 Å.
Therefore, spurious clusters are identified by means of
an exhaustive search that checks the crossing angles
between each pair of neighboring first principal com-
ponent axes. The crossing angle is defined as the acute
angle formed by the pair of neighboring axes. The first
principal component axes of neighboring clusters repre-
senting real strands should have characteristic small
crossing angles. If the angle between two neighboring
clusters exceeds 408, the angle sum for each of the two
clusters will be calculated. The angle sum is defined as

Figure 10. Scheme for local first principal component
axis projection. The position of “a” is the projection of
voxel “A” on the axis (dotted line).

Figure 11. Scheme for local linearity filtering. The
linearity is defined as the ratio of the number of voxels
in the cylinder to that in the sphere. In this example the
linearity is 10/13 ¼ 0.77.
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the sum of crossing angles between the first principal
component axis of the current cluster and those of the
six closest clusters. This value indicates how well the
first principal component axis of a particular cluster fits
in the context of other local clusters. If there are less
than six neighboring clusters, all crossing angles are
summed. The cluster with the largest angle sum value
is no longer treated as a cluster, and its voxels are
redistributed among neighboring clusters based on
identifying the cluster whose first principal component
axis is closest.

Cluster merging

Since the ratio of the number of amino acid residues to
segments is 2 in k-segments clustering, it is very likely
that several independent clusters of voxels may combine
forming one single strand. This is particularly true for
strands with highly curved structures. However, to
successfully trace consecutive Ca atoms on each strand,
clusters belonging to the same strand need to be merged
together.

The merge operation is initiated by pairing the ends of
first principal component axes of different clusters. The
first principal component axis of each cluster has two
ends, hence, for N clusters there exist 2NðN 2 1Þ pairs.
Two ends are considered for merging if the angle penalty
is smaller than 1208 and the isolation distance is larger
than 2 Å. The angle penalty is defined as the sum of the
angles formed by the first principal component axes of
the two clusters and the line connecting the two closest
ends (Figure 13). The isolation distance is the shortest
distance between this line and the first principal
component axes of any other cluster.

Obviously, the angle penalty will be small for two
neighboring clusters belonging to the same strand. In
the merging algorithm, all eligible end pairs are sorted
according to their angle penalty, and the merging
operation starts with the pair having the smallest angle
penalty. Although one end could be paired with different
partners, the nature of b-strands dictates that each end

can only be paired once. Therefore, after one end is
merged with its partner, any other pairs that include
this end are no longer considered. As the merging oper-
ation proceeds through all eligible pairs, clusters
assigned to the same strand are merged. The final pro-
duct is a set of voxel groups, each of which is presumed
to delineate a single strand.

Building pseudo-Ca traces for strands

The next step involves building a pseudo-Ca trace in
each of the voxel clusters. Since voxels are grouped by
strands, each pseudo-Ca trace delineates one strand.
However, the connectivity between strands and the
directionality of each strand must be ignored because
such information cannot be discerned from density
maps at low to intermediate resolutions.

Strand walking

The first step in defining the trace of pseudo-Ca-atoms
in a single group of voxels requires that the two end-
point voxels, corresponding to the N and C-terminal Ca-
atoms of a particular strand be identified. The end-point
voxels are chosen as belonging to the pair of voxels that
are most distant from each other within a group, as
would be expected for a b-strand. One end-point voxel
defines the first pseudo-Ca position. Based on an average
3.8 Å separation between adjacent Ca-atoms along a
b-strand, a sphere of radius 3.8 Å (centered at the first
pseudo-Ca position) is drawn and the voxel with the
largest neighboring voxel number within 2 Å is defined
as the next pseudo-Ca position. If two points have the
same number of neighboring voxels, the one with the
smallest distance to the mass center of all neighbors is
chosen to be the next pseudo-Ca position. The procedure
is designed to extend the pseudo-Ca trace along the line
of maximum density in the cluster, which would
coincide with the backbone of the strand. To avoid back-
ward extension, all voxels within 3.8 Å to an already-
built pseudo-Ca will not be counted in the search for the
next Ca-atom. Note that it is possible while searching
the density in regions of discontinuity to fail to find a
point with any neighbor voxel within 2 Å. In this circum-
stance, the next Ca is chosen to lie at a position along the
line connecting the current Ca and the second end-point
voxel at a distance of 3.8 Å from the current Ca. This
strategy assures that the Ca trace is continuous until
the second end-point voxel falls within 3.8 Å of a built
Ca-atom.

Figure 12. Demonstration of k-segments algorithm on a noisy spiral data set. Results using four, six, and 12 segments
(from left to right) are shown. The dots are the data, and the thicker lines are the fitted segments. The Figure is adapted
from the original literature.18

Figure 13. Illustration of angle penalty for cluster
merging scheme. Angle penalty is determined by the
two neighboring first principal component axes and
equals the sum of a and b.
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Strand seeding

It is important to emphasize that, in our strategy, the
overall trajectories of the strands are provided by the
voxel groups from ad hoc morphological analysis of
density maps and no information is derived from 3D
structural prediction methods. Once a trajectory is
known, a pseudo-Ca trace can be built in a variety of
ways. Sometimes, especially with experimental density
maps, the noise level may be high and this may lead to
only a portion of the sheet being located by the
procedure described above. In such instances, a comple-
mentary procedure can be employed to complete the
building of the missing strands. The procedure is based
on the knowledge that the distance between two adjacent
b-strands is always 4.5 Å and the distance between
consecutive Ca-atoms along a strand is 3.8 Å. With this
intrinsic logic, it is then possible to “grow” missing
strands from the identified ones (i.e. using defined
strands as seeds for other strands). To accomplish
this, strands are added at both sides of the existing
strands until the edges of sheet density map are reached.
Finally, because of the inherent curvature of b-sheets, the
extended strands need to be adjusted to best fit the
density map.

A method for blind deconvolution of density maps

Building Ca traces into low-resolution density maps is
inherently problematic. In an attempt to at least partially
overcome this obstacle, we implemented a deconvolu-
tion method derived from the image restoration
method.44 Deconvolution can be used to enhance the
appearance of major secondary structural elements and
this in turn permits better tracing of b-strands. Other
methods such as the watershed transform for segmenta-
tion of density maps also provide objective means to
interpret features in maps.45

Image restoration generally refers to processes
designed to recover an image from a degraded
observation. Restoration methods have enjoyed wide-
spread application in a number of fields such as artificial
satellite imaging, remote sensing, and medical imaging.
Improvement of image quality often enhances the ability
to extract “hidden” information from observations that
would otherwise be difficult to interpret or would be
misleading. The same holds true for the interpretation
of features contained in density maps. Hence, proper
deconvolution of density maps has the potential to
improve the accuracy with which pseudo-Ca traces can
be built.

The general principle of our blind deconvolution of
3D maps involves the iterative minimization of a convex
cost function. This cost function, also known as non-
negativity and support constraints recursive inverse
filtering (NAS-RIF) technique, belongs to the class of
non-parametric finite support blind image restoration
methods.44,46 – 48 The basic assumptions are that a bio-
logical molecule of finite extent is imaged against a
uniform, gray background, and the edges of the
molecule are completely or almost completely contained
in the observed frame. Neither statistical knowledge nor
a parametric model of the point-spread-function (PSF) is
needed for the original image. The only requirement for
restoration is the non-negativity of the original image
and support size of the molecule. The support size is
defined as the smallest rectangle containing the entire
molecule. The image is restored in a process that filters
the degraded image to generate an image estimate and

this process involves the simultaneous identification of
the original image and the PSF from the degraded image.

The following linear model is assumed to represent
the degradation of the original image:

gðx; y; zÞ ¼ f ðx; y; zÞ p hðx; y; zÞ þ nðx; y; zÞ

where ðx; y; zÞ are the 3D discrete pixel coordinates,
gðx; y; zÞ is the experimental, degraded image, f ðx; y; zÞ is
the undegraded, original image that we wish to restore,
hðx; y; zÞ is the PSF, nðx; y; zÞ is the additive noise, and p
represents the 3D linear convolution operation.

The NAS-RIF technique applies a variable filter
uðx; y; zÞ to the degraded image gðx; y; zÞ and generates
as output an estimate of the original image f̂ðx; y; zÞ. This
estimate is then projected through a non-linear (NL)
filter that employs a non-expansive mapping into the
space that the known characteristics of the original
image is represented. The difference between the pro-
jected image f̂NLðx; y; zÞ and the image estimate f̂ðx; y; zÞ
is treated as the error function to update the variable
filter uðx; y; zÞ. The cost function used is:

JðuÞ ¼
X

;ðx;y;zÞ

e2ðx; y; zÞ þ g
X

;ðx;y;zÞ

uðx; y; zÞ2 1

2
4

3
5

2

where g in the second term is non-zero only when the
background color is black. This term is used to constrain
the parameters away from the trivial all-zero global
minimum. The first term e2ðx; y; zÞ has the form of:

X
ðx;y;zÞ[Dsup

f̂2ðx; y; zÞ
1 2 sgnðf̂ðx; y; zÞÞ

2

" #

þ
X

ðx;y;zÞ[ �Dsup

½f̂ðx; y; zÞ2 LB�
2

where f̂ðx; y; zÞ ¼ gðx; y; zÞ p uðx; y; zÞ, Dsup is the set of all
pixels inside the support, and �Dsup is the set of all pixels
outside the support. The constant LB is zero for black
background. It can be shown that the cost function JðuÞ
is convex so that a convergence to a global minimum
and the uniqueness of the solution are possible.49 Note,
the filter uðx; y; zÞ has a dimension Nxu £ Nyu £ Nzu, here
Nxu is the number of pixels in the x direction. All the
elements in the filter are the variables for optimizing the
restoration. In practice, with a voxel volume of 1 Å3, a
filter of size of Nxu ¼ Nyu ¼ Nzu ¼ 5 produced optimal
restoration.

Computer source codes

The computer source codes for sheettracer and
deconvolution will be soon released as a part of a
comprehensive software package OPUS for modeling
protein structures and dynamics at low to intermediate
resolutions. They are currently available directly from
the authors upon request prior to the final release.
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