## Addendum

# Note to the Paper by Guasch et al. (2002) Detailed Architecture of a DNA Translocating Machine: The High-resolution Structure of the Bacteriophage $\phi 29$ Connector Particle 

Alicia Guasch ${ }^{1}$, Joan Pous ${ }^{1}$, Borja Ibarra ${ }^{2}$, F. Xavier Gomis-Rüth ${ }^{1}$ José Marıa Valpuesta ${ }^{2}$, Natalia Sousa ${ }^{2}$, José L. Carrascosa ${ }^{2}$ Miquel Coll ${ }^{1}$, Alan A. Simpson ${ }^{3}$, Yizhi Tao ${ }^{3}$, Petr G. Leiman ${ }^{3}$ Mohammed O. Badasso ${ }^{4}$, Yongning $\mathrm{He}^{3}$, Paul J. Jardine ${ }^{4}$ Norman H. Olson ${ }^{3}$, Marc C. Morais ${ }^{3}$, Shelley Grimes ${ }^{4}$ Dwight L. Anderson ${ }^{4}$, Timothy S. Baker ${ }^{3}$ and Michael G. Rossmann ${ }^{3 *}$<br>${ }^{1}$ Institut de Biología Molecular de Barcelona, CSIC, Jordi Girona 18-26, E-08034 Barcelona, Spain<br>${ }^{2}$ Centro Nacional de Biotecnologıa, CSIC, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain<br>${ }^{3}$ Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-1392, USA<br>${ }^{4}$ Departments of Microbiology and Oral Science, 18-246 Moos Tower, University of Minnesota, Minneapolis, MN 55455, USA<br>*Corresponding author

The recent paper by Guasch et al. ${ }^{1}$ describing the structure of the $\phi 29$ bacteriophage head-tail connector at $2.1 \AA$ resolution (PDB code 1 h 5 w ), makes reference to the original $3.2 \AA$ resolution structure (PDB code 1 fou) published by Simpson et al. ${ }^{2}$ and used by Guasch et al. to solve the 1 h 5 w structure by molecular replacement. The Guasch paper states that there are marked differences between the 1 h 5 w and 1 fou structures in the chain tracing and the side-chain positioning in the wide domain. As these and a number of other statements in the Guasch paper may have led to the impression that these differences are larger than they really are, we give here Tables summarizing the similarities and differences (Tables 1 and 2).

Another paper by Simpson et al., ${ }^{3}$ which was accidentally omitted from the text of the Guasch et al. paper, reports two additional structures of the $\phi 29$ connector: at $3.2 \AA$ resolution and at $2.9 \AA$ resolution (PDB codes 1jnb and 1ijg, respectively).

The $2.9 \AA$ resolution structure shows no significant differences from the structure subsequently reported by Guasch et al. (Figure 1; Tables 1 and 2).

## References

1. Guasch, A., Pous, J., Ibarra, B., Gomis-Rüth, F. X., Valpuesta, J. M., Sousa, N. et al. (2002). Detailed architecture of a DNA translocating machine: the high-resolution structure of the bacteriophage \$29 connector particle. J. Mol. Biol. 315, 663-676.
2. Simpson, A. A., Tao, Y., Leiman, P. G., Badasso, M. O., He, Y., Jardine, P. J. et al. (2000). Structure of the bacteriophage $\$ 29$ DNA packaging motor. Nature, 408, 745-750.
3. Simpson, A. A., Leiman, P. G., Tao, Y., He, Y., Badasso, M. O., Jardine, P. J. et al. (2001). Structure determination of the head-tail connector of bacteriophage \$29. Acta Crystallog. sect. D, 57, 1260-1269.

Edited by P. Wright

Table 1. Statistical comparison of the $\phi 29$ connector wide domains in different structures

|  | RMS deviation |  | Maximum deviation |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{C}^{\alpha}$ atoms | All atoms | $\mathrm{C}^{\alpha}$ atoms | All atoms | Number of $\mathrm{C}^{\alpha}$ atoms deviating more than 2 $\AA$ |
| 1h5w versus 1fou | 1.1 | 2.2 | 4.9 | 10.6 | 15 |
| 1h5w versus 1jnb | 1.2 | 2.0 | 5.2 | 11.1 | 10 |
| 1h5w versus 1ijg | 0.8 | 1.6 | 6.4 | 11.4 | 5 |

The wide domain is defined as residues $38-128$ and 247-284. All distances are in $\AA$ and correspond to comparisons of the A monomers in all structures.

Table 2. Superposition of the entire monomers in the four reported structures

|  | RMS deviation |  |  | Maximum deviation |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
|  | $\mathrm{C}^{\alpha}$ atoms | All atoms | $\mathrm{C}^{\alpha}$ atoms | All atoms | Number of $\mathrm{C}^{\alpha}$ atoms deviating more than 2 A |
| 1h5w versus 1fou | 1.1 | 1.8 | 4.9 | 10.6 | 20 |
| 1h5w versus 1jnb | 1.1 | 1.8 | 5.1 | 11.3 | 19 |
| 1h5w versus 1ijg | 0.9 | 1.3 | 7.0 | 11.6 | $9^{\text {a }}$ |
| 1ijg versus 1jnb | 1.1 | 1.9 | 6.0 | 11.8 | 18 |
| Chain A versus chain B in 1ijg | 0.9 | 1.5 | 7.5 | 13.8 | 6 |
| Chain A versus chain B in 1h5w | 0.5 | 0.8 | 4.4 | 6.5 | 2 |

The number of the aligned $\mathrm{C}^{\alpha}$ atoms is 251 . All distances are in $\AA$.
${ }^{\text {a }}$ The number of differences greater than $2 \AA$ varies from 1 to 9 depending on which of the 12 monomers are being compared.


Figure 1. Stereo diagram showing the superposition of the $\mathrm{C}^{\alpha}$ backbone of monomer A in the 2.1 A resolution structure 1 h 5 w (green) and the 2.9 A resolution 1 ijg structure (red).

