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The three-dimensional structure of DNA-filled, bacteriophage T4 isometric capsids has been determined by means of
cryoelectron microscopy and image reconstruction techniques. The packing geometry of protein subunits on the capsid
surface was confirmed to be that of the triangulation class T 5 13. The reconstruction clearly shows pentamers, attributed
to capsid protein gp24*, surrounded by hexamers of the major capsid protein, gp23*. Positions of the accessory proteins,
Hoc and Soc, are also clearly delineated in the surface lattice. The Hoc protein is the most prominent surface feature and
appears as an extended molecule with a rounded base from which a thin neck and a globular head protrude. One Hoc
molecule associates with each hexamer. Nearly continuous “ridges” are formed at the periphery of the gp23* hexamers by
an association of 12 Soc molecules; however, Soc is absent along the boundaries between the hexamers and the pentamers.
The duplex DNA genome forms a highly condensed series of concentric layers, spaced about 2.36 nm apart, that follow the

general contour of the inner wall of the protein capsid. © 2001 Academic Press
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Introduction. Bacteriophage T4 is a large, double-
stranded DNA virus (family Myoviridae) that infects Esch-

richia coli. Mature virions contain over 40 different
olypeptides that form a prolate capsid, which encapsi-
ates the ;170-kbp genome, and several other struc-

ural components, including a collar with whiskers, a
eck, a tail with a contractile sheath, and a base plate
ith fibers (14).
The structure and morphogenesis of T4 capsids, and

he closely related bacteriophage T2, have been exten-
ively characterized using a variety of genetic and bio-
hemical methods; however, previous structural analy-
es have primarily utilized negative-stain and metal-
hadow electron microscopy (6). Many features of the T4
apsid structure were delineated from studies of a num-
er of polymorphic variants of T4 and T2. Some of these

nclude: (1) giants, which have abnormally long capsids
hat either occur naturally or can be produced from in
itro mutations and that sometimes have tails attached;
2) polyheads, which are long, open-ended tubes of gp23
ften produced by mutations; (3) two-dimensional protein
heets of a proteolytic fragment of the main capsid pro-

ein, gp23; and (4) isometric and intermediate-length
hage produced by “petite” mutations of gp23 (see (6, 22).
hese studies indicated that the mature T4 capsid is an
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longated T 5 13l (Q 5 21) icosahedron (2, 6). The
ature virion shell is predicted to contain 160 hexamers

f gp23* (48.7 kDa), 12 copies of gp20 (61 kDa) at the
ortal vertex, and 55 copies of gp24* (;44 kDa), ar-

anged as 11 pentamers, at the remaining vertices. Post-
ssembly cleavage of gp23 and gp24 in proheads pro-
uces gp23* and gp24*, respectively, in mature virions

see (6)). Two accessory proteins, Hoc (40.4 kDa) and
oc (9.1 kDa) (highly-antigenic outer capsid protein and
mall outer capsid protein), which are not required for
hell formation, decorate the capsid surface (16, 17, 21).

A detailed understanding of capsid morphogenesis
equires structural information on the mature virion, on
ts components, and on assembly intermediates. Atomic-
cale knowledge will ultimately be needed to identify
pecific interactions that occur among the various struc-

ural proteins throughout the process. In the interim,
ryoelectron microscopy (cryoEM) and three-dimen-
ional (3D) image reconstruction methods can provide a
ood source of reliable information that would otherwise
e difficult to obtain through high-resolution techniques

ike X-ray crystallography. Because the techniques by
hich icosahedral particles can be reconstructed from

ryoEM images are well established (4), DNA-filled, iso-
etric capsids of T4 (hereafter, “isometrics”) were se-

ected for initial study. A 3D reconstruction of such cap-
ids, calculated to a resolution limit of 15 Å and reported

ere, will serve as a starting point in the high-resolution
etermination of the mature, prolate structure. A recent
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386 RAPID COMMUNICATION
paper (18) presents structural data on empty T4 isometric
apsids that is consistent with our results.

Results. Frozen-hydrated, bacteriophage T4, 10am255/
3pt2134-c mutants exhibited profiles in projection im-
ges characteristic of structures with an isometric mor-
hology and which lacked the various appendages and

ail found on wild-type virions (Fig. 1). Different orienta-
ions of the isometrics in the vitrified buffer yielded par-
icle profiles ranging from nearly circular to hexagonal.

ost isometrics contained densely packed DNA within
heir cores and the remaining particles appeared to be
artially full or empty. Here we present results of a 3D

econstruction of just the DNA-filled particles (Figs. 2–4).
s has been observed in a number of viruses (7, 8, 12, 13,
4), the compact DNA organization leads to characteris-

ic “fingerprint” patterns in many of the isometric parti-
les (Fig. 1, inset).

A 3D reconstruction was calculated from 862 images
f T4 isometrics to 15 Å resolution (Fig. 2). The isometric
4 capsid has a rounded, hexagonal profile that arises

rom the 20 nearly planar, triangular, surface facets. The
article diameter varies from ;97.3 nm along the fivefold
xes to ;87.9 nm along the threefold and twofold axes.

The organization of features on the surface of the
sometric capsid is clearly consistent with an incomplete

5 13 skew, icosahedral lattice (11). In the absence of
ilt experiments designed to determine the absolute

FIG. 1. CryoEM of bacteriophage T4 isometrics. Electron micrograph
recorded at 1.86 mm underfocus of a field of DNA-filled and empty T4
isometric particles. Arrow indicates the filled particle shown in the inset
which exhibits a “fingerprint” pattern consistent with the presence of
highly condensed duplex DNA inside the capsid (see (6)).
and of the reconstruction (e.g., (5)), we displayed our
econstruction as the T 5 13l enantiomer, consistent
ith the hand observed in images of metal-shadowed
hage surfaces (2).

The isometric capsid image shows 12 pentameric cap-
omeres at the vertices and 120 hexameric capsomeres

Fig. 3). Because the reconstruction was determined
aking use of 532-icosahedral symmetry, the visibility of

he portal vertex, a dodecamer of gp20, was diminished
wing to its being averaged with the 11 pentamers of
p24*. The hexameric capsomeres each contain 6 cop-

es of gp23* (giving a total of 720 gp23* molecules; see
6)). They are located in two distinct sites in the icosa-
edron: 5 peripentonal hexamers lie adjacent to each of

he 12 pentamers, and the remaining 60 (nonperipen-
onal) hexamers surround the 20 icosahedral, threefold
xes of symmetry. The accessory protein, Soc, forms a
early continuous, raised surface ridge (;8.5 3 2.7 3 1.4
m) that encircles each of the nonperipentonal hexamers
f gp23*, but encircles only the five sides of the peri-
entonal hexamers that are most distal to the pentamers

Figs. 2 and 3, top). Close inspection of surface views
Fig. 3, top) and radial-density projections (e.g., Fig. 3,
ottom) reveals that while most gp23* molecules appear

o be in contact with two Soc molecules, each of the 120
p23* molecules closest to the pentamers contact only
ne Soc molecule (Fig. 5). Hence, the absence of Soc at
examer–pentamer interfaces is what produces the in-
omplete ridge apparent about each of the peripentonal
examers.

The other accessory protein, Hoc, which is dispens-

FIG. 2. Shaded-surface rendering of the three-dimensional recon-
struction of filled T4 isometrics. The view is along a twofold axis of the
icosahedron. The prominent lollipop-shaped projections are Hoc mol-

ecules. A total of 120 such molecules extend outward from the center
of each hexamer in the capsid.
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387RAPID COMMUNICATION
able for capsid formation (16, 17), lies at the center of all

FIG. 3. Views, approximately along a quasi-sixfold axis, showing the
organization of the T4 hexamers and pentamers. Top shows a close-up
view of the T4 reconstruction with two-, three-, and fivefold axes
identified for a single asymmetric unit (labeled 2, 3, and 5, respectively).
Hexamers contain 6 copies of the main capsid protein, gp23*. Twelve
molecules of Soc appear to form a nearly continuous ridge around
each hexamer. A single Hoc molecule, with a thin stalk and a bulbous
head, projects radially from the center of each hexamer. Pentamers of
gp24* comprise the fivefold axes. The bottom shows the projected
densities in the T4 reconstruction at a radius of ;43 nm, with contrast
reversed to render high-density features in bright shades and low-
density (e.g., solvent) as dark shades. At this radius, monomers of
gp23*, Soc, and Hoc are distinguished.
20 gp23* hexamers and extends ;5.0 nm above the
apsid surface. It has a multidomain structure with a

n
w

ounded base (;1.9 nm high), a constricted neck region,
nd a globular head that is ;2.0 nm wide by ;2.4 nm

high (Fig. 3, top). The shape of the globular head varies
slightly between the two quasi-equivalent Hoc mole-
cules. This is most likely a consequence of noise in the
reconstruction and also flexibility in the neck which
would permit the heads to adopt different positions rel-
ative to the capsid surface. The structure of Hoc is larger
and extends farther than the one presented in a recent
study of empty T4 isometric mutants (18).

According to theory (11), the number of capsomeres in
a strict icosahedral capsid is given by the relation 10T 1
2, where T is the triangulation number. Hence, a strict
T 5 13 structure would consist of 132 capsomeres, of
which 12 would be pentamers and the remaining 120
would be hexamers. The isometric T4 particles consist of
132 capsomeres with 120 hexamers of gp23*, 11 pen-
tamers of gp24*, and 1 dodecamer of gp20 (see (6)).
Hence, the T4 isometric capsid is not a strict T 5 13

tructure though the distribution of subunits follows the
5 13 pattern. In addition, each hexamer contains 1

oc molecule and the Soc molecules are distributed with
stoichiometry of 6 in each nonperipentonal and 4 in

ach peripentonal hexamer (Fig. 5). The overall stoichi-
metry of the primary structural proteins is thus: 720
opies of gp23*, 660 copies of Soc, 120 copies of Hoc, 55
opies of gp24*, and 12 copies of gp20. The morpholo-
ies and density levels of the gp23* and Soc molecules
losest to the fivefold axes appear identical to the cor-
esponding features in the nonperipentonal gp23* and
oc molecules. This suggests that the portal vertex (gp20
odecamer) does not significantly alter the conforma-

ions of gp23* and Soc.
The inside core of the filled T4 exhibits a mass distri-

ution that is a highly condensed set of concentric rings
hat follow the general outline of the inner surface of the
apsid (Fig. 4). This distribution is consistent with an
rganized packing of the duplex DNA as is inferred by

he fingerprint patterns in the images of many particles
Fig. 1, inset). This highly organized DNA packing per-
ists for an annular region of at least 20-nm radius as
an be seen in cross sections of the reconstruction (Fig.
) and in a radial density profile (Fig. 4, inset). At least
ight layers of DNA can be detected with an average

nterduplex spacing of ;2.36 nm, which is in close
greement with other independent measurements (see

6)).

Discussion. The reconstructed structure of DNA-filled,
4 isometric capsids has validated a number of assump-

ions concerning wild-type, prolate T4 capsids that have
een made on the basis of information gathered from

elated structures. The current model for the organization
f the T4 head has emerged from consideration of ge-

etic, biochemical, and optical experiments performed
ith related or mutant phage structures (see (6)), along
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with inferences based on icosahedral symmetry require-
ments (11). The T 5 13l packing geometry of the major

apsid protein in T4 isometric capsids is identical to that
ound in T2 (9, 10) and T4 giant capsids (1), upon which

the wild-type T4 model is based. This confirms the notion
that all T4 head-length variants share a common geo-
metrical architecture. It also adds credibility to proposed
models of normal length capsids based on extrapola-
tions from experiments with variants. The location and
arrangement of the accessory proteins Hoc and Soc in
isometrics matches previous reports (3, 28), and the
vertices are clearly pentameric aggregates consistent
with the presence of gp24*, as predicted (6).

The morphologies and distributions of Soc and Hoc in
the capsid imply particular functional roles for each in
phage viability, and hence may help explain the need for
genetic investment in these nonessential proteins. The
location of Soc molecules, bridging interhexamer inter-
faces, is consistent with their proposed role in reinforc-
ing the junctions between adjacent gp23* hexamers. Soc
stabilizes capsids against thermal denaturation (25), and

FIG. 4. Central section of the reconstructed T4 density map viewed
along a twofold axis and rendered in normal contrast (high-density
features appear dark). Concentric layers of alternating low and high
density lie beneath the outer capsid shell. The dark layers are attrib-
uted to densely packed duplex DNA. The inset plots the spherically
averaged density, computed from the three-dimensional reconstruc-
tion, as a function of radius. The highest density peak at the far right of
the plot corresponds to the protein density in the outer capsid shell
(;3.0 nm thick). At least eight progressively smaller peaks between
radii of 38 and 22 nm arise from the condensed layers of duplex DNA.
The spacing between successive rings is ;2.36 nm, which closely
agrees with previous measurements of close packed DNA in bacterio-
phage T4 (see (6)).
xposure to detergent (26) or alkaline pH (17), suggest-
ng that Soc may serve a role in preserving phage via-
ility in chemically hostile environments occupied by T4
osts. The extended nature of Hoc is consistent with its

dentification as the most immunogenic capsid protein
nd a suggestion that it is well exposed (28). Though the
eparate domains of the Hoc molecule might suggest

he presence of a fibrous (coiled-coil?) linker, examina-
ion of the amino acid sequence provides no obvious
lues about the domain organization (unpublished ob-
ervations). The location of Hoc implies that this mole-
ule likely imparts little, if any, stability to the capsid.

ndeed, the stability of capsids at alkaline pH is unaf-
ected by the absence of Hoc (17), and Hoc binding only

inimally affects the stability of the gp23* matrix against
hermal denaturation (25). However, because Hoc has
een reported to alter the affinity of some binding sites

or Soc (3), Hoc may influence gp23* conformation and
hus may exert an indirect affect on capsid stability.
lthough under standard laboratory conditions the func-

ion of Hoc is uncertain, its presence in the T4 genome
mplies that it provides some advantage for T4 survival,
ossibly in an environmental niche occupied by its nat-
ral bacterial host.

FIG. 5. Schematic representation of the distribution of capsid protein
subunits within the 5 13l lattice (thin black lines) of the isometric T4
particle. The view direction is from outside the particle and along a
threefold axis of symmetry. The region depicted includes three com-
plete asymmetric units of the icosahedron (bounded by 3 gp24* pen-
tamers) as well as small portions of adjacent asymmetric units for
clarity. One Hoc molecule associates with each hexamer of gp23*. The
3 gp23* hexamers nearest the icosahedral threefold axis are each
surrounded by a full complement of 12 Soc molecules. The peripen-
tonal hexamers of gp23* (adjacent to the gp24* pentamers) are each
surrounded by only 10 Soc molecules. This arrangement appears to be
dictated by Soc interactions with adjacent gp23* subunits in neighbor-
ing hexamers. Soc molecules are absent wherever a gp24*–gp23*

interface occurs, indicating that either gp24* or curvature in the surface
lattice abrogates Soc binding.
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A detailed examination of the T4 isometric reconstruc-
tion suggests some properties of Soc binding. Soc mol-
ecules have been proposed to form trimers (3), and the
reconstruction shows Soc subunits in close contact at
the trimeric sites of the surface lattice. However, the
reconstruction also clearly shows that the 60 Soc mole-
cules closest to the capsid vertices appear as mono-
mers, implying that Soc only appears trimeric due to the
arrangement of its binding sites. Early biochemical stud-
ies also indicated that Soc–gp23* interactions are fa-
vored over Soc–Soc interactions (3), and recent studies
of Soc expressed in E. coli show it to be a monomer in
solution (18). Thus, the binding of Soc may be dictated
more by its interactions with neighboring gp23* mole-
cules than by intersubunit interactions with other Soc
molecules (Fig. 5).

The reconstruction gives clear evidence for the pen-
tameric nature of gp24* at the vertices, in keeping with
predictions based on symmetry constraints (6). The ab-
sence of Soc binding between gp23* and gp24* implies
that each Soc requires interactions with two separate
gp23* molecules, and therefore gp24* abrogates such
interactions at the vertices. Whether this change in bind-
ing affinity is merely a result of steric hindrance or a
result of some allosteric effect will require additional,
especially higher resolution, analysis.

In light of the results that show a different arrangement
of Soc molecules around peripentonal and nonperipen-
tonal hexamers, the stoichiometry of the mature prolate
phage differs from that of the predicted model (see (6)).
Indeed, this study shows that the prolate capsid contains
160 hexamers of gp23* (960 molecules), 12 copies of
gp20, 55 copies of gp24*, 160 copies of Hoc, but only 900
copies of Soc instead of the predicted 960.

Materials and Methods. Bacteria and phage. Phage
was grown in E. coli B40su2 cells. T4 mutant, 10am255/

3pt2134-c, was used to produce isometric phage heads.
his mutant is defective in tail assembly and produces a
ixture of head sizes, including approximately 40% iso-
etric heads (23).

Media and Buffers. M103 medium is M9 medium
20) 1 1% Difco Casamino acids. CN (capsid, Na1)

buffer, a physiological glutamate-based buffer (19) to
elp stabilize encapsidated DNA, is 250 mM sodium
lutamate, 10 mM putrescine, 5 mM MgSO4, and 10 mM

Tris, pH 7.5.

Preparation of Infected Cell Lysates for Purification of
Isometric Heads. E. coli strain B40su2 was grown at
37°C with vigorous aeration in M103 medium. Two hun-
dred milliliters of culture was grown in a 500-ml Kluyver
flask to a cell density of 4 3 108 cells/ml. The culture was
then infected with T4 mutant 10am255/23pt2134-c at an

input ratio of 5 phage per cell. After 9 min, the culture
was superinfected with 5 phage per cell. At 120 min
postinfection, cells were harvested by centrifugation. In-
fected cell pellets were resuspended in 10 ml CN
buffer 1 5 mg/ml DNase I and lysed by stirring with 0.5%
CHCl3 for 60 min. Cell debris was cleared by centrifuga-
tion at 9200 rpm for 15 min in a Sorvall SS-34 rotor.

Purification of Isometric Heads from 10am/23pt Ly-
sates. Filaments of polymerized tail sheath protein (poly-
sheath) were separated from capsids by PEG precipita-
tion, taking advantage of the observation that filamen-
tous structures precipitate at lower PEG concentrations
than spherical ones (27). Cleared lysate was chilled to
4°C and held on ice with gentle stirring (all subsequent
steps and solutions were at 4°C). Solid NaCl was added
to increase the Na1 concentration to 0.5 M. Polyethylene
glycol (PEG-8000, as flakes) was added to a final con-
centration of 5% (w/v). The solution was stirred on ice for
60 min and held at 4°C overnight. Precipitated poly-
sheath was removed by centrifugation at 9200 rpm for 15
min in an SS-34 rotor.

Supernatant from PEG precipitation was diluted with
at least 2–3 vol CN buffer to reduce the PEG concentra-
tion and centrifuged at 25,000 rpm for 60 min in a SW41
rotor to concentrate phage heads. Pellets were covered
with a small amount of CN buffer, held overnight at 4°C,
and then gently resuspended.

Glycerol gradients (15–45%) were prepared in clear
SW41 tubes by layering 5.8 ml 15% glycerol in CN buffer
over 5.8 ml 45% glycerol/CN buffer. Gradients were
formed by rotation in a Gradient Master (BioComp, New
Brunswick, Canada) for 2 min at 25 rpm, at a tilt angle of
81.5°. A gradient was overlaid with 125 ml of highly
concentrated PEG supernatant and centrifuged at 35,000
rpm for 60 min in a SW41 rotor.

DNA-filled capsids (heads) formed a wide band in the
lower part of the gradient. The top and bottom portions of
the broad band were recovered separately by syringe
and needle through the side of the tube. Samples pre-
pared for negative-stain electron microscopy contained
predominately isometric heads in the top of the band and
a mixture of mostly intermediate and normal prolate
heads lower in the band.

DNA-containing heads from the top portion of the
gradient band were diluted with sufficient CN buffer to fill
a SW41 tube (about 15 vol). Heads were then concen-
trated by centrifugation at 25,000 rpm for 90 min in a
SW41 rotor. The supernatant was discarded, and the
tubes were carefully blotted dry. The pelleted heads
were covered in a minimum volume of CN buffer, held
overnight at 4°C, and then gently resuspended.

CryoEM and Image Reconstruction. CryoEM and im-
age reconstruction procedures were performed essen-
tially as described (4, 15). Images of the frozen-hydrated,
DNA-filled and empty, isometric heads of T4 were re-
corded on Kodak SO-163 film in a Philips CM200 FEG

microscope (FEI Company, Hillsboro, OR) at a nominal
magnification of 38,0003 and at an electron irradiation
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level of ;24 e2/Å2. Fourteen micrographs with defocus
settings ranging from 1.8 to 2.8 mm underfocus were
selected and digitized at 7-mm intervals with a Zeiss
Phodis flatbed scanner (Carl Zeiss, Oberkochen, Germa-
ny). Pixels were binned to 14 mm, which represented 3.68
Å at the specimen level. A total of 1004 images of DNA-
filled and partially filled (;2.5%) particles were extracted

ithin circular windows from the scanned images. The
nitial origin and view orientation parameters for each
irion image were determined by cross-correlation and

common lines” methods, respectively (see (4)). These
parameters were then used to permit an initial, low-
resolution, 3D reconstruction to be calculated and sub-
sequently used as a starting model for the next step in
the parameter refinement process. Refinement was car-
ried out iteratively with use of the polar Fourier transform
technique at progressively higher resolutions until no
further improvement was noted as measured by several
reliability criteria (see (4)). The final reconstruction, com-
puted from 862 virion images, was corrected for both
phase and amplitude effects of the contrast transfer
function and was calculated to 15 Å resolution. Though
the reconstruction was calculated to 15 Å, a more con-
servative estimate of the actual resolution limit achieved,
as measured by various reliability criteria (see (4)), is

20 Å. These same criteria indicate that the noise limit
f the data is reached at 15 Å. Adequate sampling of
ifferent particle orientations was ensured, as all values

n the inverse eigenvalue spectrum of the reconstruction
ere ,1.0. Since reconstructions computed from projec-

ion images emerge with arbitrary handedness, and we
id not determine the absolute hand of the T4 isometric
tructure (e.g., (5)), the hand of the final reconstruction
as set as the T 5 13 laevo skew class. This is con-

istent with results obtained on metal-shadowed T2 viri-
ns (9, 10) and later confirmed for T4 (2).
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