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I. VIRAL RECEPTORS

Unlike plant viruses, most mammalian, insect, and
bacterial viruses attach to specific cellular receptors
that, in part, determine host range and tissue tropism.
Viruses have evolved to utilize a wide variety of cell-
surface molecules as their receptors, which include pro-
teins, carbohydrates, and glycolipids. Some viruses rec-
ognize very specific molecules, such as the intercellular
adhesion molecule-1 (ICAM-1; CD54), the receptor rec-
ognized by a large group of rhinoviruses, whereas other
viruses recognize widely distributed chemical groups,
such as sialic acid moieties by influenza viruses. The
tissue distribution of the receptor, in part, determines
virus tropism and, hence, the symptoms of the infection.
Similarly, species differences between receptor mole-
cules can limit host range. For instance, only humans
and apes are susceptible to rhinovirus infections, a prop-
erty correlated with the inability of human rhinoviruses
(HRVs) to bind to the receptor ICAM-1 molecule in other
species.

Despite extensive similarities in sequence, structure,
and physical properties among picornaviruses, suggest-
ing evolution from a common ancestor (Rossmann et al.,
1985; Palmenberg, 1989; Rueckert, 1990), they neverthe-
less recognize a variety of receptors. Possibly a primor-
dial virus was able to bind weakly to a large number
of different molecules. Subsequently, different viruses
evolved that were progressively more efficient at recog-
nizing particular molecules as a means to infect specific
cells. Indeed, the grouping of picornaviruses might sug-
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gest such a scenario. All polioviruses (PVs) appear to
recognize human CD155 [“poliovirus receptor” (Mendel-
sohn et al., 1989)] and many coxsackie B viruses recog-

ize coxsackie-adenovirus receptor (CAR), whereas cer-
ain echoviruses recognize decay-accelerating factor
DAF; CD55). It is surprising, therefore, that rhinovirus
erotypes can be divided into roughly three groups, each
roup recognizing a different cellular receptor molecule

Abraham and Colonno, 1984; Uncapher et al., 1991). The
eceptor for the major group of rhinoviruses, ICAM-1,
elongs to the immunoglobulin (Ig) superfamily (Greve et
l., 1989; Staunton et al., 1989), whereas the receptor for

he minor group is the low-density lipoprotein (LDL) re-
eptor (Hofer et al., 1994).

Receptor binding is just the first step in infection. The
irus or maybe only the genome then enters the cell in a
rocess that requires translocation of the viral genome
r a subviral particle across the membrane into the
ytoplasm, and sometimes into the nucleus. Since ge-
ome delivery requires or accompanies major rear-

angements of the capsid structure, entry must be a
ightly regulated process, which is triggered by the cell.
he mechanism of entry, for example for enveloped vi-

uses, requires fusion of the viral envelope with the
imiting cellular membrane. Nonenveloped viruses such
s picornaviruses (Rueckert, 1990) enter the cytoplasm in

manner that has not been well elucidated, though it
ust differ significantly in detail from the membrane-

usion strategy adopted by enveloped viruses.

II. PICORNAVIRUSES AND THE
CANYON HYPOTHESIS

Picornaviruses are small, icosahedral, nonenveloped
iruses with a plus-sense RNA genome. They are among
he most common animal virus pathogens and include

RVs and PVs. High-resolution structures have been

etermined for a variety of HRV and PV serotypes by
eans of X-ray crystallography (Hogle et al., 1985; Ross-
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240 MINIREVIEW
mann et al., 1985). The capsids are structurally quite
similar, but HRVs and PVs differ in both their pathology
and stability (HRVs are unstable below pH 6). Thus, PVs
can survive in the stomach and intestines, whereas rhi-
noviruses thrive primarily in the upper respiratory sys-
tem. Virions are about 8.5 3 106 daltons in mass, have an
external diameter of ;300 Å, and contain 60 protomers,

ach of which is made up of four polypeptides, VP1–VP4.
he first three of these viral proteins reside on the exte-

ior of the virus and make up its spherical protein shell.
he three PV serotypes all recognize the same cellular

eceptor molecule, CD155 (Mendelsohn et al., 1989;
oike et al., 1990; Wimmer et al., 1994). At least 78 of the
ore than 100 HRV serotypes recognize ICAM-1 as a

ellular receptor, and other picornaviruses recognize a
ariety of different cell-surface molecules (Rueckert,
996). Although ICAM-1 is known to be involved in ad-
esion of lymphocytes to damaged or infected cells, the
ormal function of CD155 is uncertain.

The capsids of rhino- and enteroviruses have a narrow
urface depression (“canyon”) that surrounds each of the

FIG. 1. Comparison of the mature structures of ICAM-1, the receptor f
monkey PV receptor (mCD155), and the murine poliovirus receptor-rela
The number of amino acids is shown for each domain. [Reprinted with p
2 fivefold vertices. Rhinovirus receptors were predicted
o be long, narrow molecules that could bind to con-

S
M

erved residues within the canyon (Rossmann et al.,
985). This mode of binding would permit the virus to
scape host immune surveillance because bulkier neu-

ralizing antibodies should be unable to enter the can-
on. This prediction turned out to be correct with regard
o the site of receptor binding in the canyon and the
hape of the receptor for the major group of rhinoviruses

Olson et al., 1993; Kolatkar et al., 1999) and for poliovi-
uses (Belnap et al., 2000a; He et al., 2000). However, the
ationale of the prediction was questioned when the
ootprint of a neutralizing antibody was found to extend
eyond the rims of the canyon (Smith et al., 1996) even

hough naturally selected, escape mutations that pre-
ented antibody neutralization were located on the viral
urface well outside the canyon (Rossmann et al., 1985;
herry and Rueckert, 1985).

CD155 and ICAM-1 are membrane-anchored, single-
pan glycoproteins whose extracellular regions consist
f three and five domains, respectively, each with Ig-like

olds (Fig. 1). The amino-terminal domain, D1, in both
D155 (Freistadt and Racaniello, 1991; Koike et al., 1991;

ajor group of rhinoviruses, with the human PV receptor (hCD155), the
tein 2 (mPRR2). Sites of glycosylation are indicated by shaded circles.
on from He et al. (1999) Copyright National Academy of Sciences.]
or the m
elinka et al., 1991) and ICAM-1 (Staunton et al., 1990;
cClelland et al., 1991; Register et al., 1991) contains the
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virus recognition site. Hence, virus attachment occurs at
a site on the receptor that is distal from the plasma
membrane. This property may be important for success-
ful initiation of infection of cells by viruses and may
reflect the enhanced ability of the N-terminal Ig domain
to penetrate into the picornaviral canyon.

Ig superfamily domains have a structure that consists
of a b-barrel fold in which all b-strands (labeled A–G) run
parallel or antiparallel to the long axis of the domain. The

FIG. 2. (Right) The Ca backbone of domain D1 of CD155 based upon
based upon its crystallographic structure determination. Labeling of th
esidues are indicated.

T

Different IC

Type Residues Domains Mutations Expression system

1 1–185 D1–D2 Wild type CHO cells
2 1–185 D1–D2 N103 3 Q

N118 3 Q
N156 3 Q

Baculovirus-infected
SF9 cells

3b 1–190 D1–D2 Wild type Modified CHO cells
Lec3.2.8.1c

4 1–453 D1–D5 Wild type CHO cells

a The Asn to Gln mutations in type 2 ICAM-1 remove three out of fou
ICAM-1 expression produces mannose-only glycans with reduced het
b Two independent molecules per crystallographic asymmetric unit, referre
c (Casasnovas et al., 1998).
fold of the CD155 D1 domain resembles that of an Ig
variable (V) domain [nomenclature reviewed by Chothia
and Jones (1997)], whereas the fold of the ICAM-1 D1
domain is intermediate (I) between the variable and
constant (C) Ig folds (Fig. 2). An Ig-like V domain has two
extra b-strands, labeled C9 and C0, between b-strands C
and D. Thus, compared to ICAM-1, the D1 domain of
CD155 has 32 more residues. D1 in CD155 also has two
potential glycosylation sites, whereas the ICAM-1 D1

ology to protein zero. (Left) The Ca backbone of domain D1 of ICAM-1
ands, the sites of potential glycosylation, and strategically numbered

Fragments

Glycosylationa Crystal structure
Protein Data Bank
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lacks glycosylation. Absence of carbohydrate in CD155
D1 is known to enhance its binding to PV (Bernhardt et
al., 1994).

Cell entry and uncoating are initiated when PV and
HRV recognize their respective receptors (Koike et al.,
1992; Rossmann, 1994; Belnap et al., 2000b). Purified,
soluble receptor molecules, as well as the membrane-
anchored receptor, convert infectious virions to altered
(“A”) particles (135S) (Hoover-Litty and Greve, 1993; Wim-
mer et al., 1994). VP4 is absent in A particles, and the
N-terminus of VP1 is externalized (Fricks and Hogle,
1990). Slightly longer incubation leads to the formation of
80S particles, which are devoid of the genomic RNA. It is
uncertain, however, whether the 135S and 80S particles
are intermediates in the uncoating pathway (Curry et al.,
1996; Dove and Racaniello, 1997; Arita et al., 1998).

It has been suggested (Rossmann, 1994) that binding
of the receptor might expel a lipid moiety that resides in
a hydrophobic pocket within VP1, which is immediately
underneath the floor of the canyon, thereby destabilizing
the virion and, hence, initiating uncoating. Considerable
experimental data now exist that support this mecha-
nism: (i) antiviral compounds bound to the hydrophobic
pocket in VP1 inhibit uncoating in HRVs and PVs (Fox
et al., 1986); (ii) these antiviral compounds preclude cell

FIG. 3. Cryo-EM reconstructions for HRV16–type 1 ICAM-1 (in red)
and HRV14–type 1 ICAM-1 (in blue) depict the density corresponding to
the ICAM-1 fragments. Positions of the icosahedral symmetry elements
are shown. A small angular difference in orientation of receptor relative
to the viral surface indicates a slightly different binding of ICAM-1 to
each serotype. The main direction of variation is depicted schemati-
cally with a white arrow in the asymmetric unit representation (inset),
roughly parallel to the canyon depression. The edge of the canyon
nearest to the fivefold axis is defined as the “north wall.” The positions
of VP1 (blue), VP2 (green), and VP3 (red) are also shown diagrammat-
ically. [Reprinted with permission from Kolatkar et al. (1999) Copyright

uropean Molecular Biology Organization.]
binding in many of the major-group HRVs (Pevear et al.,
1989, 1992); (iii) HRV antiviral escape mutants may in-
FIG. 4. (a) Stereo view of the cryo-EM reconstruction showing the
complex of PV1(M) with human CD155. The outline of one icosahedral
asymmetric unit is shown. Note that the receptor leans in a southeast
direction. (b) Stereo view of the cryo-EM reconstruction showing the
complex of HRV16 with its ICAM-1 receptor [from Kolatkar et al. (1999)].
The outline of one icosahedral asymmetric unit is shown. Here the recep-
tor leans southwest. (c) Stereo view of a cryo-EM reconstruction of PV, also
showing the icosahedral asymmetric unit. The asymmetric shape of the
canyon is noted by the most southerly point situated slightly east of center
(arrow) and the smaller peak southwest of the canyon (arrow). These
features establish the correct hand of the reconstructions in (a) and (b) and
are consistent with the X-ray results, where the absolute hand is known.
(d) Density (green) representing one CD155 molecule fitted with the Ca

backbone structure of the closest homologous structures found in the PDB
for each of the three domains. The difference map (blue) between the
cryo-EM density and the unglycosylated CD155 model shows the sites of
glycosylation. Potential glycosylation sites are depicted on the CD155

backbone (red). [Reprinted with permission from He et al. (2000) Copyright
National Academy of Sciences.]
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volve changes in residues either at the surface of the
canyon or in the hydrophobic pocket, thereby either in-
creasing the affinity of the virus for its receptor or de-
creasing the affinity of antiviral compounds for the virus
(Hadfield et al., 1995); (iv) HRV14 is able to externalize

oth VP4 and the N-terminus of VP1 in a spontaneous,
robably reversible manner (“breathing”), as shown by

imited proteolysis followed by mass spectroscopy
Lewis et al., 1998); (v) antibodies against internal

epitopes on VP1 and VP4 cause PV neutralization, also
suggesting a breathing mechanism for PVs (Li et al.,
1994); (vi) HRV14 breathing is largely inhibited by antiviral
compounds (Lewis et al., 1998); (vii) there is kinetic
evidence for two binding modes of ICAM-1 on the sur-
face of HRVs (Casasnovas and Springer, 1995); and (viii)

FIG. 5. (a) Stereo diagram of a portion of the HRV16–type 2 ICAM
two-domain ICAM-1 fragment. Superimposed, in yellow, is the differenc
(mostly deglycosylated) reconstructions. The density in the HRV16–type
of the ICAM-1 fragments. (b) Fitting of the refined type 1 ICAM-1 mode
protein is represented in grayscale, and the disordered carbohydrates
D1 to D3 of ICAM-1, manually fitted into the HRV16–type 4 ICAM-1
Additional lumps of electron density correspond to the predicted positio
density map shown in (a) and the refined ICAM-1 D1D2 model in (b)
Molecular Biology Organization.]
complexes between HRVs and soluble receptors can be
obtained as metastable entities that can be visualized by
cryoelectron microscopy (cryo-EM), and subsequent
changes in temperature, pH, or receptor concentration
trigger an irreversible uncoating step (Hoover-Litty and
Greve, 1993; Olson et al., 1993). In spite of this seeming
wealth of data, the precise details of the interaction of
HRVs with ICAM-1 and PVs with CD155 and the se-
quence of events that lead to uncoating remain to be
confirmed.

III. CRYO-EM OF VIRUS–RECEPTOR COMPLEXES

Cryo-EM and X-ray crystallography, in conjunction with
atomic modeling, have been used to examine the inter-
actions of ICAM-1 with two different HRV serotypes
(Bella et al., 1998; Kolatkar et al., 1999) and the interac-

-EM reconstruction corresponding to the density (light blue) for the
ity map between HRV16–type 1 (fully glycosylated) and HRV16–type 2
struction has been suitably scaled to account for the lower occupancy

he cryo-EM reconstruction of the HRV16–type 1 ICAM-1 complex. The
resented by an ensemble of conformations (yellow). (c) A Ca model of
ruction. D2 coordinates were used to model domain D3 of ICAM-1.

o carbohydrate moieties on ICAM-1 D2, consistent with the difference
inted with permission from Kolatkar et al. (1999) Copyright European
-1 cryo
e dens
2 recon
l into t
are rep
reconst
ns for tw
tions of CD155 with PV serotype 1 (Belnap et al., 2000a;
Xing et al., 2000; He et al., 2000). The structure of each
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complex was modeled at atomic resolution by fitting
appropriate crystallographic structures of the virus and
of the receptor to cryo-EM density maps. The fitting
of each virus was a straightforward procedure because
all that was required was, first, to orient the X-ray and EM
structures to superimpose the known icosahedral sym-
metry elements and, second, to radially scale the EM
map to match the X-ray structure. The EM and crystallo-
graphic density maps, when calculated to similar reso-
lution limits, exhibit excellent agreement and, hence,
validate the fitting process. Radial scaling of the cryo-EM
density map to the crystallographic structure of the virus
(Rossmann, 2000) compensates for uncertainties in the
absolute magnification of EM images, which can vary up
to several percent from the nominal values recorded at
the time of microscopy (Olson and Baker, 1989). How-
ever, the fitting of crystallographically determined viral
receptor structures to the corresponding density features
in cryo-EM maps of virus–receptor complexes was a
more difficult process.

The domain structures of ICAM-1 and homologous
structures of CD155 are well known, but the elbow an-
gles between the domains in each receptor can vary
considerably. In addition, the atomic fitting procedure
had to proceed such that steric clashes with the virus
were minimized, though recognizing that formation of the
complex might have been accompanied by conforma-
tional changes in either virus or receptor. The orientation
and positional indicators, such as glycosylation sites,
helped guide the accurate positioning of crystallographic
models within the cryo-EM density maps. The combina-
tion of cryo-EM and crystallographic data yielded an
accuracy of better than 2 Å in positioning individual
receptor domains with respect to the virus surface. As
the separation between consecutive Ca atoms in a
polypeptide is 3.8 Å, the accuracy of positioning the
receptor molecule was sufficient to identify the putative
chemical interactions between the amino acids of the
receptor and viral surface.

Interactions of various ICAM-1 derivatives (Table 1)
with two rather different HRV serotypes are similar in that
the orientations of the long ICAM-1 molecule relative to
the viral surface differ by only 2 or 3°(Fig. 3). Interaction
of CD155 with PV1 is very different from ICAM-1 with
HRV (Belnap et al., 2000a; Xing et al., 2000; He et al.,

000), although the two receptors bind to similar sites
ithin the canyons (Fig. 4). ICAM-1 also binds into the

oxsackievirus A21 canyon, but in a quite different ori-
ntation from that seen in HRV or of CD155 into the PV
anyon (Xiao, Bowman, Baker, Kuhn, and Rossmann,
npublished results). Thus, the sites of receptor binding
ithin the canyon are conserved among entero- and

hinoviruses, and the receptors are long, slender, flexible

olecules, although their orientations on the viral sur-

aces can vary considerably.
IV. STRUCTURES OF THE RECEPTOR MOLECULES

The atomic structure of the amino-terminal two do-
ains, D1D2, of ICAM-1 has been determined in inde-

endent crystallographic studies (Casasnovas et al.,
998; Kolatkar et al., 1999) (Table 1). Also, the structure of

mostly deglycosylated ICAM-1 D1D2 fragment (resi-
ues 1–185, type 2, Table 1) (Bella et al., 1998) has been

established. Four independent versions of the D1D2
ICAM-1 fragment in the three available crystal structures
(Table 1) each contain a different elbow angle, with the
variation occurring mostly in one plane. This restricted
variation exists despite differences in the crystal packing
environments and glycosylation properties. The lack of a
spacer region between D1 and D2 permits several close
interactions between the two domains and appears to be
the basis for the restricted flexibility. This restriction sig-
nificantly reduced the number and range of search pa-
rameters required to fit the ICAM-1 structure to the
cryo-EM density maps. The structure of the PV receptor,
CD155, has yet to be determined at high resolution.
However, model building, based on known homologous
structures, has provided some preliminary structural in-
sights (Belnap et al., 2000a; Xing et al., 2000; He et al.,
2000).

V. RECEPTOR GLYCOSYLATION SITES GUIDE
ORIENTATION DETERMINATION

Cryo-EM density maps provide direct evidence for the
presence and location of carbohydrate moieties on the
receptor molecules and thereby help confirm and im-
prove the accuracy of fitting receptor molecule atomic
models into the cryo-EM reconstructions. Cryo-EM re-
construction of HRV16 complexed with fully glycosylated
D1D2 ICAM-1 (type 1, Table 1) and mostly unglycosylated
D1D2 ICAM-1 (type 2, Table 1) was used to produce a
difference map (Fig. 5) that identified the three deglyco-
sylated sites and thus confirmed the fit of the D1D2
ICAM-1 structure into the electron density for the virus–
receptor complex.

Although only the glycosylated form of CD155 was
used to study PV1–CD155 complexes by cryo-EM re-
construction, He et al. (2000) used a model of the
unglycosylated CD155 fitted to the cryo-EM density to
produce a difference map (Fig. 4) to confirm fit of the
model to the cryo-EM map (He et al., 2000). Belnap et
al. (2000a) used the “bumps” on the receptor mole-
cules protruding from the viral surface to identify the
glycosylation sites.

VI. THE FOOTPRINT OF THE RECEPTOR
ON THE VIRAL SURFACE

The tip of ICAM-1 D1 and the canyon wall and floor of

HRV16 and HRV14 exhibit extensive shape and charge
complementarity (Kolatkar et al., 1999). HRVs bind to
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ICAM-1, but not to other homologous molecules, such as
ICAM-2 or ICAM-3. This specificity has been rationalized
by the crystallographic and sequence analysis of the BC,
DE, and FG loops in domain D1, which differ in sequence
and conformation (Bella et al., 1998). Minor-group HRVs,

hich do not bind ICAM-1, are not obviously phylogeneti-
ally or structurally distinct from the major-group HRVs.
urthermore, HRV14, a major-group serotype, is more
istantly related to another major-group serotype,
RV16, than to the minor-group HRV1A and HRV2 sero-

ypes (whose structures are known). Nevertheless, the
esidues of HRV2 corresponding to the ICAM-1 footprint
n HRV14 or HRV16 lack the charge complementarity
bserved for the major-group HRVs (J. Bella, N. Verda-
uer, I. Fita, and M. G. Rossmann, in preparation).

The viral and receptor surfaces involved in the inter-
ace between CD155 and PV1 are in excellent agreement

ith mutational data (Bernhardt et al., 1994; Colston and
acaniello, 1994; Morrison et al., 1994; Harber et al.,

1995; Liao and Racaniello, 1997) and, hence, validate the
accuracy of the model-building study (Belnap et al.,
2000a; He et al., 2000). Unlike ICAM-1, which contacts

rimarily the floor and south wall of the HRV canyon,
D155 overlaps the north and south walls as well as the

loor of the PV canyon. Since the D1 domain of CD155
dopts a more tangential orientation relative to the virus
urface than ICAM-1, much of its C,C9,C0 face makes
dditional, extensive contact with the PV surface. Utiliza-

ion of the C,C9,C0 face by CD155 for interaction with its
iral ligand is similar in this respect to CD4 with HIV
Kwong et al., 1998). The CD155 footprint occupies about
300 Å2 of the PV surface, whereas the ICAM-1 footprint

on HRVs covers only 900 Å2 (Kolatkar et al., 1999). The
arger CD155 footprint is a consequence of the contacts

ade between the additional C,C9,C0 surface of CD155
nd the viral surface.

VII. POSSIBLE MECHANISMS FOR RECEPTOR-
INDUCED VIRAL UNCOATING

Substantial evidence [see Section II on canyon hy-
othesis (Kolatkar et al., 1999)] suggests that the struc-

ures observed for the HRV–ICAM-1 complexes repre-
ent an initial recognition event. Only subsequently is the
eceptor likely to bind deeper within the canyon and
hereby possibly compete out the lipid moiety in the VP1
ocket (Rossmann, 1994) (Fig. 6). Loss of “pocket factor”

hen presumably leads to virus destabilization and pro-
ressive disassembly and release of the genomic RNA.
D155 binding may follow a similar pathway, as evi-
enced in EM by the substantial loss of particles upon

ncubation of PV with soluble CD155 (He et al., 2000). It
as been speculated (Kolatkar et al., 1999) that the nat-
ral breathing of picornaviruses (Lewis et al., 1998) might
acilitate receptor binding to both the north and south
alls of the canyon and, thus, maintain a channel along w
he fivefold axis to permit the externalization of VP4, the
mino end of VP1, and, eventually, the RNA. For PV, the

eceptor already appears to contact both walls of the
anyon in the initial recognition event. The presence of
D155, therefore, may simply prevent natural breathing

n PV and keep pores open as the receptor binds deeper
nto the canyon.

FIG. 6. Schematic representation of a proposed two-step binding
mechanism between ICAM-1 and major-group HRVs. ICAM-1 is repre-
sented only as a two-domain fragment. (a) The first (observed) step
corresponds to the cryo-EM reconstructions of HRV–ICAM-1 fragments
in which ICAM-1 binds primarily to the floor and south wall of the
canyon; (b) the second (hypothesized) step involves a conformational
change in the virus surface, shown only on the right-hand side of the
diagram. Probably both walls and the floor of the canyon bind to
domain D1 of ICAM-1 and, in so doing, open up the fivefold channel.
This requires conformational flexibility of VP1, which forms a large part
of both the north and south walls of the canyon, and probably also an
empty hydrophobic pocket in VP1. Opening of the pentamer vertex,
induced by the binding of one or more ICAM-1 molecules, may facilitate
externalization of VP4 and other internal viral components, including
RNA. [Reprinted with permission from Kolatkar et al. (1999) Copyright

uropean Molecular Biology Organization.]
The markedly different mode of interaction of CD155
ith PV1, of ICAM-1 with HRVs, and of ICAM-1 with
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coxsackievirus A21 might seem surprising. Neverthe-
less, these receptors share several common features:
they all bind into the picornavirus canyon, initiate uncoat-
ing, and are long, thin molecules that extend far from the
cell surface. The similar location of binding in the canyon
suggests that it is the site itself that is important, not the
orientation that the bound receptor adopts. The common
binding site is required to hide a part of the site from
neutralizing antibodies (Rossmann et al., 1985) and to
regulate virus stability by competition between the bind-
ing of receptor and the lipid-like pocket factor in VP1
(Oliveira, 1993; Rossmann, 1994). The apparent need to
utilize a receptor molecule that is long and extends far
from the cell surface may indicate a requirement for the
virus to bind to molecules that, by virtue of Brownian
motion, are mobile and, hence, promote binding of mul-
tiple receptors to unoccupied binding sites on the virus,
thereby facilitating cell entry and uncoating.
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