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The three-dimensional structure of cucumber mosaic virus (CMV) was analyzed at 23 Å resolution by cryoelectron
microscopy and image reconstruction, demonstrating structural similarity to cowpea chlorotic mottle virus (CCMV), another
member of the Bromoviridae family. The CMV structure was determined at 8 Å resolution by X-ray crystallography with
phases determined by single isomorphous replacement and refined by fivefold noncrystallographic symmetry averaging.
The X-ray structure agreed with the electron microscopy reconstruction; the electron density is consistent with b-barrel
subunits arranged with T Å 3 quasi-symmetry in an orientation similar to that observed in CCMV. Strong density surrounding
the icosahedral threefold axes (quasi sixfold axes in the T Å 3 particle) between 80 and 100 Å from the particle center
formed a cylinder of radius 11 Å, similar to the density observed in the same region of CCMV. This density corresponds
to the b-annulus of CCMV, which differentiates hexamers from pentamers and determines the formation of the T Å 3
particles. The CMV and CCMV amino acid sequences were aligned, providing information (based on the CCMV atomic
model) about the probable distribution of residues in the three-dimensional structure of CMV. q 1997 Academic Press

INTRODUCTION 87, they will form only soluble dimers even at high con-
centrations (Sehnke and Johnson, 1993).Virions in the Bromoviridae family (Murphy et al., 1995)

The analysis presented in this report shows that CMVare stabilized with a variety of forces. Cowpea chlorotic
and CCMV virions are similar in: (1) particle morphology,mottle virus (CCMV), in the genus Bromovirus, can form
(2) size and orientation of the subunit b-barrels, (3) stabi-empty T Å 3 particles when protein subunits are assem-
lizing interactions for hexamer formation, and (4) subunitbled in vitro in the presence of divalent metal ions at
primary sequence. By considering these similarities inneutral pH or at pH 3.0 in the absence of metal ions
the context of the known high-resolution structure of(Bancroft, 1970). Cucumber mosaic virus (CMV), in the
CCMV (Speir et al., 1995), a structural rationale for CMVCucumovirus genus, is structurally similar to CCMV, but
mutational studies is proposed.cannot assemble in vivo or in vitro without RNA. Never-

theless, protein–protein interactions dictate the forma-
MATERIALS AND METHODStion of hexamers and pentamers in both CCMV and CMV.

The degradation of the encapsidated CMV RNA by ribo-
Three CMV strains (Fny, Y, and O) were propagatednuclease (Francki, 1968) suggests that the protein sub-

in Christie hybrid tobacco plants (Nicotiana glutinosa 1units are loosely packed or that the capsids are unstable.
Nicotiana clevelandii) and purified using the protocol ofSubunits in the alfamovirus genus can form hexamers
Lot et al. (1972). A purification protocol without high-and pentamers and will coat RNA or DNA; they form T
speed centrifugation was also used in an attempt to pro-Å 1 particles when the basic amino termini of the sub-
duce better quality crystals (Speir et al., 1993).units are removed or if the subunits are assembled in

CMV samples were flash-frozen and analyzed by cryo-the presence of pyrophosphate (Yusibov et al., 1996).
electron microscopy (cryoEM) and image processing us-Among the Bromoviridae, the weakest protein–protein
ing methods previously described (Cheng et al., 1992;interactions occur in ilarvirus particles where subunits
Smith et al., 1993; Baker et al., 1991). Images were re-have insufficient mutual affinity to form an icosahedral
corded at 149,000 nominal magnification under minimalparticle under any condition investigated. When the ilar-
dose conditions (õ20 electrons/Å2). Twenty virion im-virus subunits are released from the genomic RNA by
ages were used to calculate the reconstruction of CMVproteolytically cleaving the capsid protein in situ at Arg
at 23 Å.

Three strains of CMV were crystallized by hanging-1 These authors are joint first authors.
drop vapor diffusion techniques (McPherson et al., 1982).2 Present address: University of Pittsburgh School of Medicine, De-
Crystallization was optimized by screening a wide varietypartment of Pathology, Scaife Hall Room 5-790, Pittsburgh, PA 15261.

3 To whom correspondence should be addressed. of conditions.
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Diffraction data on X-ray films were collected by oscil- mixing a CMV solution at 10 mg/ml with an equal volume
of 50 mM Tris, 0.3 M ammonium sulfate, pH 8.5, bufferlation photography at the Cornell High Energy Synchro-

tron Source (CHESS) F-1 station (wavelength Å 0.914 Å, in the drop and equilibrated against 0.5 M ammonium
sulfate solution in the reservoir at room temperature.crystal-to-film distance Å 210 mm). Most film data were

recorded with a 0.57 oscillation angle and 36–50 sec of Crystals with the same morphology and of the same
diffraction quality (Ç6–5 Å resolution) could also be ob-exposure time. X-ray films were scanned on an Optronics

rotating drum scanner with a 50-mm raster step and in- tained with HEPES or borate buffers between pH 7.5 and
pH 8.7, or with ammonium acetate as the precipitant.dexed using the auto-indexing algorithm developed by

Kabsch (1988a). Film data were processed, scaled, and They diffracted X-rays to 5 Å resolution with synchrotron
radiation and to 6 Å with a rotating anode X-ray source.postrefined with the Purdue oscillation film processing

(Rossmann, 1979) and scaling and postrefinement pro- The CMV crystals belonged to the cubic space group I23
with the unit cell parameter a Å 336.0 Å. The Matthewsgrams (Rossmann et al., 1979).

Diffraction data between 100 and 5 Å resolution were coefficient (Vm) for CMV crystals was 3.7 Å3 per dalton
(Matthews, 1968) assuming two virus particles per unitcollected on a Siemens multiwire area detector with an

Elliot GX-20 rotating anode X-ray generator, CuKa radia- cell. These parameters dictated only fivefold noncrys-
tallographic symmetry in the unit cell and that the particletion, and a nickel-coated double mirror focusing system.

Each frame was collected with a 0.057 oscillation angle position and orientation were fixed by the space group
symmetry.and 300 to 800 sec of exposure time. Reflections were

indexed and processed with the XDS package (Kabsch, Partial native data sets were measured with synchro-
tron radiation on photographic film and with a laboratory1988a). Individual data sets from different crystals were

scaled and merged with the XSCALE program (Kabsch, X-ray source equipped with a multiwire area detector.
The film and area detector data sets were combined to1988b). The film and area detector data were combined

using a program from Mathur R. N. Murthy (personal generate a composite native set described in Table 1.
The phases were initially determined with a cryoEM-communication).

The program CLUSTAL V was used for sequence based model and, following refinement by noncrystallo-
graphic symmetry, they were used to determine heavyalignments (Higgins et al., 1992). CCMV, BMV, and BBMV

coat proteins were aligned using fixed and floating gap atom positions. Several initial models were generated by
fitting the atomic coordinates of CCMV into the CMVpenalties of 10. CMV, peanut stunt virus (PSV), and to-

mato aspermy virus (TAV) were aligned using the same cryoEM reconstructed density. The initial R factor for the
best model tested, which had 30% fewer amino acidsparameters. The two genera were then aligned to each

other using a profile alignment method with the same than the CMV coat protein, was 54% for data between
100 and 6 Å. After nine cycles of phase extension, whichgap penalties. The PAM250 matrix was used throughout.

Calculation of similarity scores and sequence formatting began with data between 100 and 14 Å resolution and
ended with data between 100 and 9.8 Å resolution, and awas performed with the GCG package (Genetics Com-

puter Group, 1992). A separate alignment of CMV, PSV, total of 66 cycles of averaging, the final mean correlation
coefficient and the R factor reached 0.87 and 20.6%, re-and TAV was used for the secondary structure prediction.

Prediction was performed using the neural network pro- spectively, between 100 and 9.8 Å. The final phases
changed an average of 627 from the original modelfile method PHD (Rost and Sander, 1993, 1994; Rost et

al., 1994). phases.
FMA derivative crystals were produced by soaking the

native CMV crystals in 0.25 to 1 mM fluorescein mercuricRESULTS AND DISCUSSION
acetate (FMA, FW Å 849.6) dissolved in the synthetic
mother liquor (either 0.5 M ammonium sulfate or 1.0 MThe cryoEM structure displayed prominent pentameric

and hexameric morphological units that protrude 40–50 ammonium acetate in 50 mM Tris buffer at pH 8.5 de-
pending on the precipitant used for crystallization) for 12Å beyond the main capsid shell (Fig. 1). The subunits for

the pentamers fold toward the fivefold axes at the virus to 48 hr. A drop of heavy atom solution was placed next
to the crystal drop to allow slow diffusion into the crystalexterior to form a compact structure with density sealing

the fivefold axes. In contrast, the hexameric capsomers and minimize crystal cracking. A derivative data set from
100 to 8 Å was collected on a Siemens area detector forexhibited large, open holes along the quasi-sixfold axes,

creating a channel through the protein shell. Small exten- a total of 5475 unique reflections (Table 2), with an overall
completeness of 40% for data with I ú 3s(I). The heavysions of density near the quasi-threefold axes connected

the individual capsomers. The RNA was packed tightly atom sites for the FMA derivative were determined from
an averaged difference Fourier map computed with theagainst the protein shell, leaving a hollow core of about

110 Å along the threefold axes (Fig. 1). refined molecular replacement phases described above.
The FMA coordinates and relative occupancies were re-Crystals of CMV exhibited a rhombic dodecahedral

morphology and grew to 0.7 mm. They were obtained by fined to convergence with fixed temperature factors of
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FIG. 1. (a) CryoEM image reconstructions of frozen-hydrated CMV (left) and CCMV (right) samples at 23 Å resolution. The particles are oriented
with a twofold axis perpendicular to the plane of the page. For both viruses, a view of the exterior (left) and a vertical slice through the center of
the particle (right) to reveal internal features are shown. CMV and CCMV are composed of distinct pentameric and hexameric morphological units
arranged with T Å 3 symmetry. The outer radial dimension of the hexamers are 145 Å for CMV and 138 Å for CCMV. Bar, 280 Å. (b) An internal
region of the electron density maps determined by X-ray crystallography at 8 Å of CMV (left) and CCMV (right). The polypeptide occupying this
region of the electron denisty in CCMV (residues 29–33) is part of the molecular switch that determines the formation of hexamers and pentamers
and nearly identical density is found for CMV, indicating that the two viruses share mechanisms for determining quasi-equivalence. The density is
22 Å thick for CMV and 18 Å for CCMV and cut perpendicular to the twofold axis. The maps are oriented identically as in (a) with the twofold axis
at the bottom center, threefold at the bottom left and right, and the fivefold at the top center. The b-hexamer feature has an outer radius of 111 Å
in CMV and 108 Å in CCMV. The base of the triangle defining the asymetric unit is 65 Å. (c) Stereo pair, showing the b-hexamer feature in the 8
Å CMV map at the left vertex of the CMV density in (b) with the edges of the triangle are shown for reference. The atomic coordinates for residues
29 to 33 of the CCMV hexamer related subunits are also shown. These coordinates were skewed into the CMV unit cell, but were otherwise
unchanged.
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TABLE 1 TABLE 3

A Summary of Reflections Measured after Combining the Film Heavy Atom Sites for the FMA Derivative after Least-Squares Re-
finement of Heavy Atom Coordinates and Relative Occupancies withand Area Detector Data Sets
Fixed Temperature Factors of 20.0 (The Corresponding Peak Heights
in Difference Fourier (DF) Maps Are Also Listed)Percentage of

theoretically Number
observable of unique Relative Height in

Sites X (Å) Y (Å) Z (Å) occupancy DFResolution (Å) data reflections

99–20.0 94 405 1 1.21 08.47 113.38 1.11 1400
2 22.56 22.93 107.08 1.13 140020–17.0 100 268

17–15.0 100 321 3 41.98 010.52 101.45 0.88 1000
15–13.0 100 548
13–11.0 98 989
11–10.0 98 833
10–9.0 94 1,210 tron density; hence it had no bias from the CCMV-based

9–8.0 87 1,714 phasing model.
8–7.0 75 2,506 The distribution of the electron density in the X-ray
7–6.0 65 3,825

map was similar to the EM image reconstruction (Fig. 1).
Total: 99–6.0 82.2 12,784 The exterior radius along the quasi-sixfold axes was 144

Å. The density near the fivefold axes extended 3 Å further.
Depressions were found close to the twofold and quasi-
twofold axes. The electron density map for each subunit20.0 (Table 3) using the heavy atom least-squares phas-
was consistent with a b-barrel motif. The long axis ofing and refinement program with noncrystallographic
the b-barrel domain was oriented in a roughly radialconstraints (Rossmann, 1976). The heavy atom sites
direction. An outstanding feature at this resolution wasobeyed the expected quasi-symmetry for the T Å 3 sur-
cylinder-like density around the threefold (quasi-sixfold)face lattice, which confirmed the good quality of the
axes, in the interior of the protein shell (Fig. 1b). Thisphases obtained by molecular averaging. Single isoso-
density extended between 80 and 100 Å from the virusmorphous replacement (SIR) phases were calculated
center and connected to the B and C subunits relatedand an electron density map was computed with these
by quasi-sixfold symmetry.phases and native amplitudes. The SIR map was aver-

There are striking similarities between the CMV andaged with fivefold noncrystallographic symmetry and
the CCMV structures. The cryoEM image reconstructionphases were refined between 20 and 8 Å. Attempts were
for both viruses show similar pentamer and hexamermade to extend the phases to 6 Å, but the amplitudes
clustering of subunits, although there are some differ-were weak and the effective resolution of the map did
ences in the appearance of the capsomers. In CMV, thenot significantly improve. The CMV electron density de-
pentamers are sealed with density, in contrast to thescribed below was based on the SIR, phase-refined elec-
pore in the CCMV pentamer. This difference may be due
to the larger CMV coat protein size or to a difference in
the orientation of the b-barrel.TABLE 2

The cylindrical density in CMV around the threefold
A Summary of the FMA Derivative Data Set Collected on the axes (Fig. 1) formed a b-annulus. At 8 Å resolution, the

Siemens Area Detector (I ú 3s(I ))
CCMV map appears very similar in this region. In CCMV,
residues 29 to 33 of the B and C subunits formed a b-Percentage of

theoretically Number hexamer structure (Speir et al., 1995). The b-hexamer
observable of unique diameter was slightly larger in CMV than in CCMV. This

Resolution (Å) data reflections would occur if the pitch of the b-strands forming the
cylinder were less in CMV or if there were longer side99–50.0 28 8
chains.50–40.0 52 15

40–30.0 68 55 The b-hexamer observed in CMV and CCMV is a vari-
30–20.0 64 212 ant of the b-annulus observed in many plant virus cap-
20–17.0 58 168 sids. The arm domain connecting the N-terminal basic
17–15.0 56 192

R-domain to the b-barrel domain has been visualized in15–13.0 52 314
the electron density for C subunits in several T Å 3 plant13–11.0 50 544

11–10.0 48 446 viruses (Harrison, 1983) including Southern bean mosaic
10–9.0 42 580 virus and tomato bushy stunt virus. The N-terminal arms

9–8.0 32 703 of the three C subunits extend along an inner edge of
Total: 99–8.0 40 5475

the protein shell and loop around the threefold axes,
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FIG. 2. (a) Coat protein sequence alignment of the cucumoviruses (CMV strain Fny, PSV, and TAV) with the bromoviruses (CCMV, BMV, and
BBMV). Location of the secondary structural elements in the CCMV structure (6) are indicated under the sequence. The standard sequence
numbering is used for each virus.

interdigitating in sets of three to form the b-annulus motif ary structure prediction indicate the close structural
similarity between the CMV and the CCMV capsids.(Olson et al., 1983). In CCMV the b-annulus is an unusual

b-hexamer structure formed by the quasi-sixfold related In addition to the icosahedral capsid function of pro-
tecting the nucleic acid and regulating particle assemblysubunits (B and C) (Speir et al., 1995). We postulate that

this motif provides the basis for strong interactions be- and disassembly, other phenotypic properties have been
mapped to the CMV coat protein. These include the resis-tween hexamer subunits, which may be important for

virus assembly and stability. tance of specific cultivars to CMV, the appearance of
Given the close similarity in quaternary and second-

ary structure, as well as the distinctive b-hexamer TABLE 4
structure observed in CMV and CCMV, the primary

Bromoviridae Capsid Sequence Similaritiesa

structures of the coat proteins of the genera bromovi-
rus and cucumovirus were compared. Known se- CMV PSV TAV CCMV BMV BBMV
quences within each genus were first aligned to pro-

CMV 1.0 0.61 0.63 0.34 0.34 0.37duce a sequence profile and these two profiles were
PSV 0.44 1.0 0.76 0.36 0.39 0.37then aligned. The multiple sequence alignment is
TAV 0.42 0.64 1.0 0.39 0.40 0.40shown in Fig. 2 and the similarity scores are in Table
CCMV 0.19 0.20 0.21 1.0 0.80 0.62

4. A secondary structure prediction of the three aligned BMV 0.19 0.22 0.21 0.70 1.0 0.61
cucumoviruses was performed (results not shown) as BBMV 0.22 0.21 0.23 0.48 0.48 1.0
an independent check of this alignment. Strands bB ,

a The bottom left half of the table contains the fraction of capsid residuesbD , bE , bG , bH , and bI were predicted in agreement
that are identical between each pair of aligned sequences. The upperwith the CCMV alignment. The bC strand was predicted
right half contains the similarity scores, calculated from a mutational dis-

to be immediately C-terminal to the equivalent CCMV tance matrix (Dayhoff and Schwartz, 1979; Gribskov and Burgess, 1986).
position. The two-amino acid bF strand was not pre- Similarity and identity were from the sequence alignment in Fig. 2. Details

of the alignment methods are described in the text.dicted. Both the sequence alignment and the second-
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chlorosis, and aphid transmissibility (Palukaitis et al., crystalline TAV subunits suggest that this trend extends
over the entire Bromoviridae family.1991; Perry et al., 1994). In the mosaic-inducing CMV

strains, a proline is present at amino acid 129; the chloro-
sis-inducing strains have either a serine or a leucine in
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