
PFTSEARCH.DOC
(last update: November 14, 2003)

CONTENTS
A. INTRODUCTION
B. GENERAL DESCRIPTION OF PROGRAM
C. PFTSEARCH PROCEDURE
D. PROGRAM OUTPUT
E. BATCH JOB PROGRAM INPUT
F. STRATEGY FOR USE OF PFTSEARCH AND EM3DR
G. DISCLAIMER
H. CREDITS
I. FINAL NOTES
J. PROGRAM MODIFICATIONS
K. FLOW CHART FOR PFTSEARCH PROGRAM

A. INTRODUCTION
PFTSEARCH determines orientations (THETA,PHI,OMEGA= θ,φ,ω) and

origin (X,Y) values for particle images. This, of course, is
critically important information for producing a 3D reconstructed
density map from many, independent images. PFTSEARCH uses cross-
correlation procedures to compare unfiltered or filtered particle
images against a database of reference projection views produced
from a 3D density map. The map might be a 3D reconstruction or
model, for example, computed from an atomic, X-ray crystallographic
structure. The last major enhancements to the program included use
of compressed data and the sliding window approach to refinement
(released in May 1998) and most recently the use of contrast
transfer function (CTF) corrections as (August 1999).

Use of CTF to assist comparison of image and projection data

The user has three different options for imposing the microscope
CTF on the model projections or raw images with the goal of getting
better refinement of orientation and origin parameters. The user,
of course, has the option (set MODE2 = 0) of NOT using the CTF
correction software.

The four CTF options are:

MODE2 = 1 Multiply the projections of the 3D model by the CTF.

MODE2 = 2 Multiply the raw image data by the CTF.

MODE2 = 3 Multiply the raw image data by the inverse CTF.

MODE2 = 1 is designed for the situation in which you have
imposed a CTF correction in the 3D map in the program EM3DR. In
theory, PFTSEARCH will work best if the model projections and raw

images are compared ‘apples to apples’. That is to say, by
imposing a CTF onto the model projections, you are trying to
recreate what noise-free data (the model) would look like if the
projection pictures had been recorded in the TEM like the raw
particle images. IMPORTANT WARNING: In PFTSEARCH’s present state
use of this option is ONLY CORRECT for image date from ONE
MICROGRAPH. If you are refining image data from multiple
micrographs (with different CTFs), then the use of MODE2 = 1
may lead to errors in refinement.

MODE2 = 2 employs the strategy used by Steve Fuller’s group.
Here, raw images are multiplied by the microscope CTF and this has
the effect of weighting the image data to emphasize the most
significant (i.e. highest S/N) and de-emphasize the least
significant (low S/N) portions of each image. This down weights
data near the nodes of the CTF, precisely where the noise is
highest in the image transforms. So, option 2 weights the data to
emphasize the reliable portions of the image while down weighting
the most unreliable portions. This, in turn, is designed to help
the PFT routine perform a more reliable refinement of orientation
and origin parameters.

MODE2 = 3 causes each raw image to be multiplied by the INVERSE
CTF as a means to create image data that more properly compares
with the UNMODIFED model projections.

Only careful testing will prove which of the above methods works
best for you or your particular project!

Use of COMPRESSED DATA = faster computations

The basic premise is that, because we normally over sample our
image data when we digitize it so the pixel size is 3-4 times as
fine as the expected resolution, then we can realize significant
computational effort merely by performing operations on compressed
data. Hence, the program switch, BIN, was added to signal
PFTSEARCH to perform its computations on uncompressed data (BIN=1)
as before or much faster on compressed data (BIN=2). Recent
improvements in memory management have even provided modest program
speed-up when PFTSEARCH is run with BIN=1. If BIN=2 (the only
other option), then the 3D map is compressed ~8-fold and hence
requires a corresponding decrease in memory requirements at run
time. Because the “volume” of the compressed 3D map is ~8-fold
smaller than that of the original map, 2D projections of the map
are computed about 8 times faster. The ‘raw’ image data are also
compressed as they are read in, which speeds up by ~4-fold all
manipulations of images and PFT data. The overall improvement in
program performance is about 6-8 fold when BIN=2.

B. GENERAL DESCRIPTION OF PROGRAM
PFTSEARCH performs two types of orientation search. They

involve coarse, GLOBAL searches (MODE=|1| or |2|). Note that
negative values for MODE (-1 or -2) are used to signify that the
model projection and PFT data have already been calculated and

stored on disk (using EMPFTPRJ) and don’t need to be calculated by
PFTSEARCH but just read in. In GLOBAL mode operation, the
orientation search for each particle image is performed over an
entire asymmetric unit, typically in 1° or coarser steps of θ and φ
(see Table 1, later). For MODE=|1| operation (GLOBAL) the particle
X,Y origins are unknown or are ignored, and an initial estimate of
each particle origin is determined with a real space, cross-
correlation procedure. This procedure compares each particle image
to a circular average of the sum of all projection views of the
model within the asymmetric unit. For MODE=|2| operation, the
orientation search makes use of the most recent particle X,Y origin
information. In addition, for both MODES of operation, each
particle origin is refined after the θ,φ,ω angles are determined for
each particle. Here, a real-space cross-correlation of each
particle image is made against the corresponding projected view (at
angle θ,φ,ω) of the current 3D model.

PFTSEARCH was designed to replace where possible EMICOFV, which
uses a common-lines procedure. EMICOFV served for many years as
the only means to determine initial orientation parameters for
icosahedral particles. NOTE: PFTSEARCH does NOT replace EMICOFV
type routines when there is no reasonable model 3D data from which
a reference data base can be produced. Thus, EMICOFV (or some
variant) may still be needed when initiating a structure
determination for a new particle whose structure is unknown or
differs substantially from any other previously determined
structure and for which no decent starting model can be produced.
The success of PFTSEARCH in part results because comparisons made
between the ‘raw’ particle images and model projections utilize all
the available data, and, in part because the projection data
generally have a high signal-to-noise (S/N) ratio. In addition,
the PFTSEARCH procedure can be sensitized by selecting just a
portion of each image for comparison with the model data. For
example, only information within defined radii in real or
reciprocal space can be utilized in the calculations.

PFTSEARCH computes two types of data from the 3D model:

1. Projections (PRJs) and

2. Polar Fourier transforms (PFTs) of the projections.

These are used as reference data to determine θ,φ,ω,X,Y values for
each 'raw' particle image. The high S/N ratios of the model 3D
density map and the projections computed from it is what makes the
orientation and origin searches work well. However, although this
method is quite robust in analyzing images of many unstained,
frozen-hydrated specimens, success requires the use of model data
that include some elements representative of the correct structure
(see e.g. Baker and Cheng [1996] J. Struct. Biol. 116:120-130).

C. PFTSEARCH PROCEDURE
PFTSEARCH converts each raw image from Cartesian (x,y) to polar

(r,ψ) format by subdividing it into a series of concentric annuli
(each usually exactly one pixel wide). Each annulus is sampled

NROT times, with the interpolation performed at a fine enough
interval to prevent loss of data resolution at the highest particle
radius. Hence, annuli at the lowest radii in the particle image
end up way over-sampled. Each annulus is then separately Fourier
transformed to give the polar Fourier transform (PFT) of the image.

The PFT gives the 1D Fourier transform (power spectrum) of the
density distribution at each radius of the particle. This provides
a particularly useful representation of projection images of
spherical objects and allows rapid and sensitive determination of
each particle θ,φ,ω orientation. Program efficiency arises because
the particle parameter determination is segregated into a few,
discrete stages rather than trying to perform all computations in a
single, brute force step.

When MODE=|1|, the first step is to estimate the X,Y origin for
each particle image by cross-correlating each image with a circular
average of the sum of all model projections in the data set (in
GLOBAL mode, these cover the entire asymmetric unit). NOTE: the
origin of the projection average falls precisely on the central
pixel of the NCOL by NROW projection array. Next, in MODE |1| or
|2|, the values of θ and |φ| are determined. Ambiguity in the sign
of φ corresponds to an ambiguity in knowing the handedness of the
particle. Then, the sign of φ and the ω angle are determined by
use of a rotational cross-correlation algorithm which compares each
'raw' image with the best matched projected view of the model and
its enantiomer (θ,φ and θ,-φ) in all possible ω orientations. For
images of spherical particles this correlation is typically
computed only for a restricted range of particle annuli, from
ANN_LO to ANN_HI. ANN_HI is generally set to a value close to or
just below the outermost radius of the particle. If ANN_HI is set
too large, added background noise from outside the particle reduces
the sensitivity of the search procedure. Also, setting ANN_LO >>
0 can help in the analysis of images of spherical viruses because
the central portions of the projected images of such specimens
typically contain a significant contribution from non-
icosahedrally ordered material (e.g the genome) and this reduces
the effectiveness of identifying the orientation of the
icosahedrally-ordered portions of the structure.

The PFT correlation procedure works best when the 'raw' image
data are band pass filtered in Fourier space (RES_LO,RES_HI) to
remove high spatial frequency noise (RES_HI) and to remove the
spherically symmetric, low frequency components (RES_LO). PFT
data, which are 2D, include both real and reciprocal space
information. These are usually represented or displayed (ROBEM
program) with radius (r) increasing along the ordinate (vertical)
axis and Fourier Bessel order (n) increasing along the abscissa
(horizontal) axis.

As previously stated, GLOBAL searches are mainly designed to
perform a coarse scan of the entire asymmetric unit as a means to
‘jump-start’ the orientation refinement process. Generally, one
cycle each in MODE |1| and MODE |2| ought to be sufficient to get
started so subsequent analysis can be done with the REFINE option
(MODE=3). Tips concerning how to use PFTSEARCH (along with EM3DR)

are discussed in greater detail in section F. Strategy for use of
PFTSEARCH and EM3DR.

Table 1: Positional accuracy of orientation search as function
of particle size

 Δ°
D(Å
)

2.0° 1.0° 0.5° 0.25° 0.10°

250 8.7 4.4 2.2 1.1 0.43
500 17.5 8.7 4.4 2.2 0.87

1000 34.9 17.5 8.7 4.4 1.75
2000 69.8 34.9 17.5 8.7 3.49

The values in the Table (in Å) represent the distance that
points on opposite sides of a spherical object (diameter, D),
appear to move in the projection plane when the object is rotated
Δ°. The following formula is used to compute this distance:

 Point separation =
2!D"

360
 Å

D. PROGRAM OUTPUT
The primary output from (also input to) PFTSEARCH is stored in

one or more PARAM files. These contain basic information about
each scanned IMAGE file (pixel size, voltage, etc.) as well as
information about each particle image (ID, THETA, PHI, OMEGA,
FFT_ORIGX, FFT_ORIGY, MAG_FAC, and three different correlation
coefficients, PFTCC, PRJCC, CMPCC). In addition, various
statistics on the correlation coefficients, as a function of radius
(PFT.RADS) and as a function of resolution (PFT.RES1 and PFT.RES2)
can be generated and stored in output files.

Three correlation coefficients (PFTCC, PRJCC and CMPCC) are
listed for each particle in the PARAM file. The first, PFTCC, is a
global correlation coefficient computed between the PFTs of each
‘raw’ image and its corresponding model projection. PFTCC
incorporates the effects of any radii cutoffs in real-space and
resolution limits in reciprocal space. PRJCC is a global, real-
space correlation coefficient computed directly between each ‘raw’
image (in polar coordinate format) and the corresponding model
projection (also in polar format). For PRJCC, the coefficient is
only computed for data between radii PFTRAD_LO and PFTRAD_HI. This
coefficient is computed from polar real space data. The third
correlation coefficient, CMPCC, is similar to PRJCC in that the
computations are performed on real space data, but CMPCC uses
normal Cartesian (x,y) format image and model projection data.
Note: the values of PRJCC and CMPCC differ, in part (need to check
this) because low radius data are overweighted in the polar
representations of images and model projections. Though opinions
are mixed, the CMPCC correlation coefficient seems to give the most
reliable assessment of particle quality because PFTCC and PRJCC are

more designed to help PFTSEARCH screen for good θ and φ values
(PFTCC) and for good X,Y, and ω values (PRJCC).

E. BATCH JOB PROGRAM INPUT
1. MODE, BIN, SYM, DANG, MODE2, ILIST, FILT_FAC (3I,F,2I,F)

2. PFTRAD_LO,PFTRAD_HI,PFTRAD_STEP,ANN_LO,ANN_HI, RADIUS, BFACTOR
(3F,3I,F)

3. RES_LO, RES_HI, JCUT, SIGCUT, IC, SC, IO, SO (2F,I,5F)

4. MAG_CEN, MAG_STEP, MAG_NUM, MAG_NORM (2F,2I)

5. 3D model input filename (A) ! DUMMY INPUT IF MODE < 0

6. PRJs input filename (A) ! DUMMY INPUT IF MODE > 0

7. PFTs input filename (A) ! DUMMY INPUT IF MODE > 0

8. empft.rads output filename (A)

9. empft.res1 output filename (A)

10. empft.res2 output filename (A)

11. PARAMETERS filename(s) (A)

Line-by-line descriptions of program input:

1. MODE, BIN, SYM, DANG, MODE2, ILIST, WIENER (3I,F,2I,F)

MODE = 1 Global orientation search mode (no input origins)
 = -1 Global mode (use stored PFTs/PRJs; no input origins)
 = 2 Global mode (use input origins)
 = -2 Global mode (use stored PFTs/PRJs; use input origins)

CAUTIONARY NOTE: If you are reading in PFT/PRJ data stored on
disk (generated by EMPFTPRJ), then it is imperative that you
specify the same values for BIN, SYM, DANG, RAD_LO, RAD_HI, and
RAD_STEP that you used in EMPFTPRJ. Otherwise, the program is
likely to crash or perform other unseemly (and unwanted)
calculations.

BIN = 1 Binfactor of 1 (DEFAULT; i.e. no data compression)
 = 2 Binfactor of 2 (compresses 3D data eightfold and 2D data

fourfold)

The current limit on BIN is 2.

SYM = 1 for no symmetry (like a ribosome)
 = 2-31 for n-fold cyclic symmetry (about z-axis)
 = 532 for 532 icosahedral symmetry (DEFAULT)
 = 222 for 222 dihedral symmetry
 = 32 for 32 dihedral symmetry
 = 422 for 422 dihedral symmetry
 = 52 for 52 dihedral symmetry
 = 622 for 622 dihedral symmetry
 = 72 for 72 dihedral symmetry
 = 822 for 822 dihedral symmetry
 = 92 for 92 dihedral symmetry

SYM specifies the point group symmetry of the particle you are
studying. The program searches one-half of the asymmetric unit
appropriate for the chosen symmetry. The available symmetries are
listed above.

In all search modes the half asymmetric unit (ASU) defines the
limits of the search area. Orientations that stray outside the
half ASU are folded back to the equivalent view within the ASU.
The limits of the half ASU for various symmetries are as follows:

Symmetry θ min θ max φ min φ max

1 0.0 90.0 -180.0 180.0

5 0.0 90.0 -36.0 36.0

422 0.0 90.0 0.0 45.0

52 0.0 90.0 0.0 36.0

532 69.09 90.0 0.0 31.71

DANG is used to specify the step size in the θ and φ directions
(in degrees: DEFAULT = 1.0). The step size in the θ direction
remains constant (= DANG) but it varies in the φ direction from a
smallest value (= DANG) when θ=90° (at the 'equator') and increases
thereafter for progressively smaller values of θ . Varying the φ
step size assures uniform sampling of the ASU in regions where θ is
<90°. The step size in the φ direction is given by the formula:

DANG/sinθ

If the φ step size was not varied as given in the above formula,
the grid sampling would be much too fine near the ‘poles’. When
θ approaches 0° or 180° (N and S poles), the program adjusts the φ
step size to maintain even sampling. For example, at θ = 30°, the φ
step size will be twice DANG (i.e. 2.0° if DANG is 1.0°, since
{1.0/sin(30°)}=2.0).

The value you choose for DANG has a tremendous impact on
PFTSEARCH run time. As Table 1 showed (Section C.), it makes no
sense to set this parameter very small, especially at the beginning
of data analysis when GLOBAL orientation searches are performed.
Table 2 demonstrates how the number of program calculations
significantly increases as DANG is decreased. Also, Table 2
clearly demonstrates how the “problem” becomes even more severe in
the case of particles with lower symmetry.

Table 2: Number of views per ASU as a function of particle
symmetry and orientation search angle increment (Δ°)

 Point Group Symmetry
Δ° 532 52 5 1
3.0
0

48 266 519 2,353

2.0
0

91 573 1,127 5,253

1.0
0

370 2,173 4,309 20,809

0.5
0

1,430 8,471 16,869 82,869

0.2
5

5,606 33,439 66,733 330,751

0.1
0

34,327 207,358 414,353 2,064,448

MODE2 determines if and how the CTF is used. Note: It only
makes sense to use this option IF the 3D model is a CTF-corrected
map. If the map is an uncorrected one, then the use of MODE2 = 1
or 2 will force the program to compare CTF-modified and CTF-
unmodified data, which is undesirable and may lead to undetermined
errors in refinement. The values of MODE2 may be set as follows:

MODE2 = 0 No CTF modifications to the data are made.

 = 1 Projections of the 3D model are multiplied by the
CTF, and these are compared to the unmodified, raw
images.

 = 2 The raw images are multiplied by the CTF, and these
are compared to unmodified projections of the 3D
model.

 = 3 The raw images are multiplied by the INVERSE CTF, and
these are compared to unmodified projections of the
3D model.

ILIST signals PFTSEARCH to generate various forms of output:

ILIST = 0 Minimal output (refined orientations and origins)

 = 1 Correlation coefficients are computed as functions of
radius and resolution and results are stored in output
files PFTSEARCH.RADS, PFTSEARCH.RES1, PFTSEARCH.RES2.

 = 2 Same as ILIST=1, but also gives correlation
coefficients for each particle view

2. PFTRAD_LO, PFTRAD_HI, PFTRAD_STEP, ANN_LO, ANN_HI, RADIUS,
BFACTOR (3F,3I,F)

These variables (real space pixel units) define the annular
portion of the projected data (PFTRAD_LO to PFTRAD_HI) to be used
in the PFT calculations. PFTRAD_STEP sets the radial step interval
and hence determines the number of annuli in each PFT (NANNULI =
[[PFTRAD_HI-PFTRAD_LO]/PFTRAD_STEP] + 1). PFTRAD_LO is normally
left = 1.0 and PFTRAD_HI is usually set to a value just larger than
the particle boundary (but usually much smaller than NCOL/2 if you
boxed the original particle images conservatively). Use PFTRAD_LO
> 1.0 if you suspect that the projected data at higher radii (i.e.
projection only of outer capsid features) will give a more
sensitive measure of the orientation parameters.

PFTRAD_LO can't be set lower than 1.0 because the center of the
projected view doesn't change with orientation and hence gives no
useful information for the PFT calculations. The default for
PFTRAD_HI is (NCOL+1)/2, but note that this will generally be too
large especially if the particle boxing was performed
conservatively.

PFTRAD_STEP is normally left = 1.0. Using a larger value will
reduce the number of computations (smaller NANNULI) but use
cautiously (especially if BIN=2) so you don't sample the data too
coarsely. If PFTRAD_STEP is < 1.0, you may make needless
calculations (NANNULI too large), especially if BIN=1 and the
images were digitized at a pixel resolution at least twice as fine
as the expected resolution limit. NOTE: This variable is slated
for removal in the future.

ANN_LO,ANN_HI define the range of annuli from the real space
polar coordinate image and projection data that are included in the
calculations. The best way to determine optimum values for these

parameters is to run PFTSEARCH with the initial DEFAULT values
(0,NANNULI-1), and check the output file PFTSEARCH.RADS to see the
correlation coefficients a function of radius. The average
correlation coefficient typically undergoes a large drop near the
outer edge of the particle (ANN_HI). Also, the correlations are
generally lower at low radii (ANN_LO) corresponding to the 'core'
part of the structure. Thus, ANN_LO and ANN_HI may require some
fine tuning to optimize the orientation and origin search
procedure.

The chosen bin value (Line #1) does not change the entered value
of PFTRAD_LO, PFTRAD_HI, ANN_LO and ANN_HI. Conversions are made
automatically by the program.

 RADIUS and BFACTOR not used by PFTSEARCH, they are
placeholders for compatibility with other programs such as OOR.

3. RES_LO, RES_HI, JCUT, SIG, IC, SC, IO, SO (2F,I,5F)

RES_LO and RES_HI define the lower and upper resolution limits
of the data to be included in the calculations. These program
input variables should be specified in the same units as PIXSIZE,
where PIXSIZE is the size of each pixel in the digitized images and
is specified for each image in the corresponding PARAM file.
PIXSIZE may be defined in any units you choose (Å, nanometers,
pixels, yards, etc.) but you MUST be consistent and use the same
units to define PIXSIZE, RES_LO and RES_HI. A value of RES_HI
smaller than 2*PIXSIZE (the DEFAULT) is disallowed (this would
exceed the Nyquist limit which is two-pixel resolution). You
should treat this value for RES_HI as an absolute lower limit,
which, if used, is likely to be an unrealistic value for real (i.e.
noisy) data. Hence, use careful judgment in setting the value of
RES_HI.

The DEFAULT for RES_LO [IDIM1*PIXSIZE] is probably
unrealistically large. Again, PFT works best if some of the low
resolution data are ignored. This is because, for example, for
particles with icosahedral symmetry the very low resolution data
only carry information about spherical symmetry and little if any
information about icosahedral symmetry. General rule of thumb: set
RES_LO to a value no smaller than one-fifth the size of the
particle diameter. For example, if the particle diameter is 500Å,
then a value for RES_LO of 100Å might be an appropriate starting
point for PFTSEARCH. If you prefer to specify PIXSIZE in pixel
units (instead of Å or another unit), and the pixel size of the
digitized image corresponds, for example, to 3.86Å units, then
RES_LO would be 25.9 (=500/(5*3.86).

REMINDER: Use good judgment in setting the above program
variables!!! The success or failure of PFTSEARCH may very well
depend on your ability or lack thereof to set these values.

JCUT specifies the minimum rotational Bessel order (Jn) to
include in the calculations. The DEFAULT (=1) omits the Jo term,
which is recommended in analyzing icosahedral particles because

this removes the spherically symmetric image components and boosts
the sensitivity of determining icosahedral orientations. To
include Jo, set JCUT to any negative value. To cut out higher
orders, JCUT is set to a value greater than 1 (NOTE: to my
knowledge, no one has ever carefully tested the effects of doing
this).

SIG allows the program to filter the PFT data on the basis of
the variance of the PFT data. In theory, this option should
greatly sensitize PFTSEARCH. However BE FOREWARNED: this option is
still UNTESTED so it may not and probably does not work!!! SIG
specifies the threshold for the variance mask. With SIG=0.0
(DEFAULT), the masking option is disabled.
 IC, SC, IO and SO not used by PFTSEARCH, they are placeholders
for compatibility with other programs such as OOR.

4. MAG_CEN, MAG_STEP, MAG_NUM, MAG_NORM (2F,2I)

These program input parameters are used to direct the
magnification factor refinement and CMP correlation coefficient
(CMP_CC) calculations.

MAG_CEN specifies the midpoint of the magnification scale factor
search. The program tests for magnification factors that are
(MAG_NUM-1)/2 steps above and below MAG_CEN. Set MAG_CEN = 0.0 or
a negative number to force the program to use the MAG factor for
each image as stored in the PARAM input data file. Hence, when any
positive value of MAG_CEN (e.g. 1.0) is chosen, the MAG search
“window” for all images will be over the same range. *** NEED TO
CHECK THIS OUT ***

MAG_STEP defines the grid size of the magnification search. A
value of MAG_STEP = 0.005, for example, corresponds to 0.5%
increments.

MAG_NUM establishes the extent of the magnification search
“window”. This should be an odd integer > 0. For example, with
MAG_CEN = 1.0, MAG_STEP = 0.005, and MAG_NUM = 11, the search
window will encompass magnification factors ranging between 0.975
and 1.025. Entering '1' will force MAG to be either MAG_CEN or the
value read from the PARAM file (which occurs whenever MAG_CEN is
set ≤ 0.0).

MAG_NORM is a switch used to normalize the MAG scale factors so
that the average MAG is 1.0. This occurs only when MAG_NORM is set
equal to 1, otherwise, the MAG values determined by the program are
output without being normalized.

5. 3D model input filename (A FORMAT)

Enter the name of the file that contains the 3D model from which
new PRJs and PFTs are to be calculated. Note: PFTSEARCH currently
only works if the dimension (NCOL_MAP = NROW_MAP = NSEC_MAP) of the
3D model exactly matches the image dimension.

6. PRJ input filename (A FORMAT)

Enter the name of the file that contains the model projection
data (DEFAULT = PFT.PRJS). This data is only read in if MODE = -1
or MODE = -2, otherwise the program calculates what it needs at run
time.

7. PFT input filename (A FORMAT)

Enter the name of the file that contains the model PFT data
(DEFAULT = PFT.PFTS). This data is only read in if MODE = -1 or
MODE = -2, otherwise the program calculates what it needs at run
time.

8. empft.rads filename (A format)
 Enter the name of the file that will contain the radial
distribution of correlation coefficients.

9. empft.res1 filename (A format)
 Enter the name of the file that will contain the distribution of
cross correlation coefficients PMAP versus POLAR_PRJ.

10. empft.res2 filename (A format)
 Enter the name of the file that will contain the distribution of
cross correlation coefficients filtered PMAP versus POLAR_PRJ.

11. PARAM input filename(s) (A FORMAT)

Enter the names of up to 999 PARAM files, with each filename on
a new input line. The format of each PARAM file is:

LINE INPUT

1 IMAGE filename (A)

This is the name of the IMAGE file which contains byte-
packed raw image data stored in *.PIF format.

2 PIXSIZE, UNITS, VOLTS, AMP_FAC, DELF_MAJ, DELF_MIN,
ANG_MAJ, Cs (F,I,6F)

PIXSIZE = pixel size for data in IMAGE file. May be
specified in any units (e.g. Å, nanometers,
pixels, etc.) as long as you make sure to
specify the correct value for UNITS.

UNITS = specifies the units assigned to PIXSIZE. UNITS
is defined as follows:

 = 0 assumes PIXSIZE is given in dimensionless
pixels

 = 1 assumes PIXSIZE is given in Ångstroms

 = 2 assumes PIXSIZE is given in nanometers

VOLTS = microscope voltage (in volts) for the image data
in the IMAGE file.

AMP_FAC = amplitude factor. For cryoEM data, a DEFAULT
value of 0.07 is reasonable and anything above
0.15 might be suspicious.

FOCUS_MAJ = defocus value (µm) along the major axis of
astigmatism. Note: Positive values are used to
designate underfocus.

FOCUS_MIN = defocus value (µm) along the minor axis of
astigmatism.

ANG_MAJ = angle between major axis and X-direction in FFT,
measured positive in a counter-clockwise
direction (X-axis = 0.0)

Cs = spherical aberration coefficient (mm) for the
microscope used to record the data in the IMAGE
file.

3 ID, THETA, PHI, OMEGA, FFT_ORIGX, FFT_ORIGY, MAG_FAC,
PFTCC, PRJCC, CMPCC (I,9F)

ID = specifies the particle # in the *.PIF
format IMAGE file.

THETA,PHI,OMEGA = orientation of particle #ID

FFT_ORIGX,FFT_ORIGY = center of particle #ID (FFT
coordinates)

MAG_FAC = scale of particle #ID relative to a
standard (model)

PFTCC,PRJCC,CMPCC = three correlation coefficients

N+2 Same as #3 for as many particles (N) as needed.

Some parameters may equal 0.0 or may be left blank depending on
the stage of the analysis. For example, when PFTSEARCH is first
run (MODE=1), the PARAM file will simply consist of the first two
lines as outlined above. There will be ABSOLUTELY NO lines of
particle data (or they will be ignored in MODE=1) because PFTSEARCH
performs a global search of ALL particle images in the PIF format
IMAGE files specified in line #1 of each PARAM file. The first run
of PFTSEARCH creates a PARAM file with the first set of ID, THETA,
PHI, OMEGA, X, Y, MAG_FAC, PFTCC, PRJCC, and CMPCC values.

PFTSEARCH outputs a new PARAM file for each one used as input.
The new PARAM data files are named with a specific convention: a
"_00#" is tagged after each input PARAM filename. For example,
suppose you had but one input PARAM file named "MYDATA.DAT_000".
Then, the name of the output PARAM file would be "MYDATA.DAT_001".
Normally you would use this file as the input file for the next run

of PFTSEARCH, in which case the subsequent PARAM file would
automatically be named "MYDATA.DAT_002", and so forth. The
importance of understanding the way this works is crucial! If, by
'accident', you forget to update the correct PARAM filename in your
BATCH COMMAND PROCEDURE file prior to the next cycle of PFTSEARCH
(e.g. leaving the name "MYDATA.DAT" in the command file), the
output will end up in a file named "MYDATA.DAT_001" INSTEAD of
"MYDATA.DAT_002".

FINAL NOTE: if you use several PARAM files as input to
PFTSEARCH, then use some rational naming system so the output files
will be clearly distinct from the input files. Here's one example
in which hypothetical PARAM files for four different micrographs
are used:

 PFTSEARCH

Cycle# Input PARAM filenames Output PARAM filenames
 1 HSV_1856.DAT_000 HSV_1856.DAT_001
 HSV_1858.DAT_000 HSV_1858.DAT_001
 HSV_1900.DAT_000 HSV_1900.DAT_001
 HSV_1989.DAT_000 HSV_1989.DAT_001

 3 HSV_1856.DAT_001 HSV_1856.DAT_002
 HSV_1858.DAT_001 HSV_1858.DAT_002
 HSV_1900.DAT_001 HSV_1900.DAT_002
 HSV_1989.DAT_001 HSV_1989.DAT_002

 2 HSV_1856.DAT_002 HSV_1856.DAT_003
 HSV_1858.DAT_002 HSV_1858.DAT_003
 HSV_1900.DAT_002 HSV_1900.DAT_003
 HSV_1989.DAT_002 HSV_1989.DAT_003

!**
!* Example PFTSEARCH BATCH JOB run in GLOBAL MODE with *
!* PFT data read in from disk file (MODE = -1) and *
!* using compression factor of 2 (BIN = 2) and *
!* normalizing the MAG scale factors (MAG_NORM = 1) *
!* and using data from three PARAM files. *
!**
-1, 2, 532, 1.0, 0, 0
1.0, 46.0, 1.0, 0, 46, 0, 200.0
200., 40., 1, 0.0, 0.7, 4.0, 0.9, 3.0
0.0, 0.005, 11, 0
HSV.PIFMAP
HSV.PRJS
HSV.PFTS
Empft.rads
Empft.res1
Empft.res2
HSV_1856.DAT_000

HSV_1858.DAT_000
HSV_1989.DAT_000

Point to appropriate directory:
% cd ~tsb/v/hsv/test

Run pftsearch with the file created above ("pftsearch.bch") and
create log file "pftsearch.log":
% pftsearch < pftsearch.bch > pftsearch.log &

F. STRATEGY FOR USE OF PFTSEARCH, OOR AND EM3DR
The complexity of computing a 3D reconstruction from a set of

cryoEM images means that there is no simple cookbook strategy for
accomplishing this task. Each set of image data presents its own
challenges. Users must be diligent and devise an appropriate
strategy based on several criteria such as size of particle,
magnification of images(s), digitization step size, resolution
range(s) to use, type of specimen (is it a brand spanking new
structure never seen before or one that may be new but closely
related to a virus whose structure is already known?), etc. The
day is yet to come when programs are able to take as input a set of
images and spit out a correct 3D structure! However, ample
experience indicates that the following, general strategy may prove
useful in many applications:

1. Obtain a 3D density map to use as a starting model.

2. Run PFTSEARCH (GLOBAL MODE=1) with BIN=2 and MAG_CEN=1.0. Use
fairly coarse search interval (almost certainly no smaller than
1° - see Table 1) to obtain the first set of θ,φ,ω,X,Y parameters.

3. Run EM3DR (BIN=2) to compute a new 3D map from images with the
set of θ,φ,ω,X,Y parameters obtained in Step #2.

4. Run PFTSEARCH (GLOBAL MODE=2) with BIN=2, using the same search
interval as in step #2 to obtain new θ,φ,ω,X,Y parameters.

5. Compare latest θ,φ,ω,X,Y parameters to those found in Step #2.
Examine the three different correlation coefficients (see below)
to detect ‘bad’ particle images and to compare with the
coefficients found in Step #2 (they should, on average, be
better!).

6. Run EM3DR (BIN=2) to compute a 2nd 3D map from images with the
θ,φ,ω,X,Y parameters obtained in Step #4.

7. Run OOR (REFINE MODE=3), using the same search interval as in
Step #2.

8. Repeat steps #6 and 7 for several cycles. With each new cycle
you need to decide whether or not to change program parameters
(it is probably best to stick to ONE change at most per cycle).
You may consider changes such as:

a) Reduce search step size in half. For example, if the step
size was 1° in the previous cycle, reduce it to 0.5° for the next
cycle.

b) Increase the resolution limits of the PFTSEARCH search and/or
EM3DR output (use RES_LO and RES_HI variables, see below).

c) Filter out 'bad' particle images from EM3DR.

9. Repeat step #8 for one or two cycles with BIN=1. This is done
mainly to make sure everything is OK. Of course, cycles with
BIN=1 take considerably longer to execute than previous ones
because uncompressed data are used in the calculations. If you

notice any drastic changes in correlation coefficients as listed
by PFTSEARCH or the θ,φ,ω,X,Y parameters suddenly change, then
you may have proceeded too quickly during previous cycles and
may need to back up a few steps before continuing on.

G. DISCLAIMER
To date (5/98) this program has worked quite well in the

analysis of a wide variety of specimen images. The routines seem
to work as long as the starting model as well as subsequent
reconstruction maps are on track. If your starting model is
seriously flawed, don't expect miracles! Also, for particle image
data that exhibits very weak enantiomorphic features, the model
must include some correct enantiomorphic character or the
refinement will lead to a 3D map that exhibits mirror line symmetry
about the equatorial line. In our experience this has not been a
problem for icosahedral particles with handed surface lattices
(e.g. T=7 papovaviruses) because the arrangement of morphological
units is clearly enantiomorphic even at very low resolution (>50Å).
In many instances, enantiomorphic features do not become apparent
until much higher resolutions (<30-40Å), and therefore proper
refinement of data cannot proceed until the model incorporates
information at the higher resolutions. In tricky situations, it is
still advisable to use programs like EMICOGRAD with small data
sets (5 particles or less) to try and make sure that the particles
are oriented with respect to a consistent hand. A crude 3D
reconstruction computed from such a limited data set, although
noisy, may give a much better model for further refinement with
PFTSEARCH.

H. CREDITS
The original code for PFTSEARCH was developed by T. Baker in

~1988 and tested in a class project by J. Tesmer in ~1990. R. H.
Cheng performed more extensive and rigorous tests which led to a
full scale working version of the program in 1993. A description
of the program as used during the period from about 1993 up through
1997 appears in:

Baker, T. S. and R. H. Cheng (1996) A model-based approach for
determining orientations of biological macromolecules imaged by
cryoelectron microscopy. J. Struct. Biol. 116:120-130.

Some preliminary discussion of the routine also appears in:

Cheng, R. H., V. S. Reddy, N. H. Olson, A. J. Fisher, T. S. Baker,
and J. E. Johnson (1994) Functional implications of quasi-
equivalence in a T=3 icosahedral animal virus established by cryo-
electron microscopy and X-ray crystallography. Structure 2:271-
282.

A number of people have and continue to make valuable additions/
corrections/suggestions to PFTSEARCH. These include (among others
and in alphabetical order), Robert Ashmore, Steve Walker, Wei Zhang
at Purdue, David Belnap and James Conway (NIH), and Stephen Fuller
(EMBL).

We acknowledge with thanks permission to use an interpolation
subroutine supplied by Michael Unser (NIH). This routine is
described in:

M. Unser, A. Aldroubi, and M. Eden (1991) Fast B-Spline transforms
for continuous image representation and interpolation. IEEE
Trans. Pattern Anal. Machine Intell. 13(2):277-285.

I. FINAL NOTES
1. PFTSEARCH currently ONLY works with cubic 3D MAP data

(NCOL=NROW= NSEC). Also, the program expects ALL particle
images to have the same dimensions (NCOL x NROW) as in the 3D
model.

2. DEXTRO3:[TSB.FOR]PFT.BCH is an example BATCH command file
used to run PFTSEARCH.

J. PROGRAM MODIFICATIONS
The following gives a history of significant changes that have

been made to the program. More recent changes can be found in the
header of the program itself.

DATE
MODIFIED

BY WHOM
COMMENT(S)

20-MAY-1995 DMB Added GLOBAL search option
XX-JUL-1996 DMB Added SCALE, CC_CMP, & PFT_CALC_AVGS
xx-JAN-1997 DMB Changed/moved data input & THE,PHI calc.
XX-MAY-1997 RWA/JC Added PIF format
19-DEC-1997 TSB/RWA PIF MAP compatible
23-DEC-1997 TSB/RWA PRJ/PFTS in core
 7-JAN-1998 TSB Implemented BIN mode
 8-JAN-1998 TSB Using MAG instead of SCALE
 9-JAN-1998 TSB PFT_GLOBAL subroutine
15-JAN-1998 TSB/RWA *.PIF input of PFTs/PRJs
19-JAN-1998 TSB Multiple param file input capable
 4-FEB-1998 TSB Read/store parameter data in arrays
 6-FEB-1998 TSB Add MAG normalization
11-FEB-1998 TSB Add DMB's FLIP changes
 6-MAR-1998 TSB Make UNIX compatible
27-JUL-1999 TSB Incorporate use of CTF as per SBW
25-AUG-1999 TSB Incorporate use of TSB CTF routines
14-NOV-2003 RWA/MBS Port to Linux and Excision of OOR refinement

♦♦♦
♦
The FORTRAN code for PFTSEARCH is in code archive
(/bio/baker9d3/rwa).
♦♦♦
♦

K. FLOW CHART FOR PFTSEARCH PROGRAM

** means “see below”; # means end of program; ! signifies no subroutine calls

* MAIN *
* (PFTSEARCH.FOR) *

 *
 * |- GET_NVIEW_MOD - GET_T1T2P1 !
 * |- PIF_OPEN !
 * |- PIF_READ_GH - differentEndian !
 *- INFO -|- PIF_READ_DH ----------------------|- differentEndian !
 * | |- convertBackFloat !
 * | |- PIF_CLOSE !
 * |- PFILE_INFO -|- PIF_OPEN !
 * | |- PIF_READ_GH - differentEndian !
 * |- PIRADDEG !
 * |- FFT_SETDIM_DEF_SAME !
 *
 *- GETMEM0 - MALLOC !
 *
 *- FILL_PARAMS !
 *
 * |- GETMEM1 - MALLOC !
 * |- GET_T1T2P1 !
 * |- CALC_MOD_TPS !
 * |- GETMEM2 - MALLOC !
 * |- PIF_READ_WMAPI2 - PIF_READ_MAPI2**
 * |- PIF_CLOSE !
 * |- STOP_WATCH_START !
 *- GLOBAL -|- GET_PRJSPFTS_G**
 * |- STOP_WATCH_STOP !
 * |- FREEMEM2 - FREE !
 * |- GETMEM3 - MALLOC !
 * |- PFTCC_FILL_G -|- PIRADDEG !
 * | |- PIF_READ_MAPI4**
 * |- GLOBAL_CC**
 * |- FREEMEM1 - FREE !
 * |- FREEMEM3 - FREE !
 *
 *- PARAM_SRT (Lixun’s routine)
 *
 * |- STOP_WATCH_START !
 * |- GETMEM_REFINE - MALLOC !
 * |- PIF_READ_WMAPI2 - PIF_READ_MAPI2**
 * |- PIF_CLOSE !
 * |- CALC_TP_MASK - PIF_WRITE_DEBUGI4 - PIF_WRITE_BYTE_IMAGE !
 * |- PIF_WRITE_DEBUGI4 - PIF_WRITE_BYTE_IMAGE !
 * |- GETMEM_REFINE2 - MALLOC !
 *
 *- WRITE_PARAMS - INCREMENT_FNAME !
 *- PIF_CLOSE !
 *- STOP_WATCH_STOP !
 *- CALC_AVGS !
 *- FREEMEM0 - FREE !
 #

==
=
| |- PIRADDEG !
| |- MAP_CLEAR !
| |- MAP_PRJ -|- MAP_PRJ_XZ --- MAP_CLEAR !
| | |- MAP_PRJ_AXIS - MAP_CLEAR !
| | |- MAP_PRJ_ALL -- MAP_CLEAR !
| |
| |- SAVE_PRJS – MAP_SYM**
|- GET_PRJSPFTS_G -|- MAP_POLAR -|- MAP_CLEAR !
| | |- MAP$POLAR - MAP_POLAR_GRID !
| |
| |- PMAP_FFT - FOURT - L6TO9 !
==
=
| |- PIRADDEG !
| |- GETMEM4 - MALLOC !
| |
| | |- MAP_CLEAR !
| | |- PIF_READ_MAPI4**
| |- PRJAVG_FFT -|- MAP_FFT_FILL - FFT_CLEAR !
| | |- FFT_2D - FOURT - L6TOL9 !
| |
| |- PIF_OPEN !
| |- PIF_READ_GH - differentEndian !
| |- PIF_CLOSE !
| |- PIF_READ_DH -|- differentEndian !
| | |- convertBackFloat !
| |
| |- PIF_READ_IMGI1 - PIF_READ_BYTESHORT_IMAGE !
| |- IMG_MAP !
| |- MAP_FFT_FILL - FFT_CLEAR !
| |- FFT_2D - FOURT - L6TOL9 !
| |- CTF_MULTIPLY – CTF_ASTIG !
| |- FFT_2D_BACK - FOURT - L6TOL9 !
| |- FFT_MAP_FILL !
| |- MAP_FFT_FILL - FFT_CLEAR !
| |- FFT_2D - FOURT - L6TOL9 !
| |- GET_XY**
| |- INTERP2D (NIH C routine)
| |- MAP_FFT_FILL - FFT_CLEAR !
| |- FFT_2D - FOURT - L6TOL9 !
| |- INTERP2D (NIH C routine)
| |- MAP_FFT_FILL - FFT_CLEAR !
| |- FFT_2D - FOURT - L6TOL9 !
| |
| | |- MAP_POLAR -|- MAP_CLEAR !
| | | |- MAP$POLAR - MAP_POLAR_GRID !
| | |
|- GLOBAL_CC -|- GET_TPO_G -|- PMAP_FFT - FOURT - L6TO9 !
| | |- AVG_PFTIMG !
| | |- GET_THEPHI_G !
| | |- GET_BESTPRJ - PIF_READ_MAPI4**
| | |- GET_PHIOMEGA !
| |- MAP_XFLIP !
| |- COPY_R4 !
| |- INTERP2D (NIH C routine)

| |- MAP_FFT_FILL - FFT_CLEAR !
| |- FFT_2D - FOURT - L6TOL9 !
| |- GET_XY**
| | |- IMG_FFT_FILL - FFT_CLEAR !
| | |- MAP_FFT_FILL - FFT_CLEAR !
| | |- FFT_2D - FOURT - L6TOL9 !
| | |- FFT_LOP !
| |- GET_BESTMAG -|- FFT_HIP !
| | |- FFT_2D_BACK - FOURT - L6TOL9 !
| | |- FFT_IMG_FILL !
| | |- FFT_MAP_FILL !
| | |- INTERP2D (NIH C routine)
| |- LIST_CCS**
| | |- TO_NFOLD !
| |- TO_ASYM_UNIT -|- RETURN_TO_UNIT_TRIANGLE**
| | |- TO_N22 !
| |
| |- FREEMEM4 - FREE !
==
=
| |- COPY_I2 !
| |- IMG_MASK !
| |- IMG_FFT_FILL - FFT_CLEAR !
| |- FFT_2D - FOURT - L6TOL9 !
| |- COPY_R4 !
|- LIST_CCS -|- MAP_2DMASK !
| |- MAP_FFT_FILL - FFT_CLEAR !
| |- PFTCC_RES !
| |- FFT_FLT -|- FFT_HIP !
| | |- FFT_LOP !
| |
| |- FFT_2DBT -|- COPY_R4 !
| | |- FOURT - L6TOL9 !
| |
| |- IMG_MAP!
| |
| |- MAP_POLAR -|- MAP_CLEAR !
| | |- MAP$POLAR - MAP_POLAR_GRID !
| |
| |- PFTCC_RAD !
==
=
| |- MAP_CLEAR !
|- GET_XY -|- CCF_FFT - CCF -|- FOURT - L6TOL9 !
| | |- MAP_STATS - MAP$STATS !
| |
| |- PFTCC_PEAK -|- MAP_PEAK !
| |- TRUS_POLYS - TRUS_SOLVE - TRUS_MATINV !

==
=
| |- MAP_SYM_CAVG - MAP_STATS - MAP$STATS !
| |- MAP_SYM_RAVG -|- MAP_SYM_GRID !
|- MAP_SYM -|- COPY_R4 |- MAP_STATS - MAP$STATS !
| |- MAP_STATS - MAP$STATS !
==
=
| |- POLAR_TO_COSINES - NORM !
|- RETURN_TO_UNIT_TRIANGLE -|- EQUIVALENT_VIEW -|- CROWTHER_TO_MATRIX !
| |- MATMUL !
| |- MATRIX_TO_CROWTHER !
==
=
|
|- PIF_READ_MAPI4 - PIF_READ_MAP_INT_IMAGE - differentEndian !
|
==
=
|
|- PIF_READ_MAPI2 - PIF_READ_MAP_SHORT_IMAGE - differentEndian !
|
==
=
|
|- PFTCC_R (*** NOT WRITTEN YET ***)
|
==
=

