
Parallel 3 Dimensional Reconstruction
Yongchang JI (yji@cs.ucf.edu)
(Last update October 29, 2004)

CONTENTS
A. INTRODUCTION
B. PROGRAM INPUT
C. EXAMPLE CONTROL FILE
D. PROGRAM EXECUTION
E. PROGRAM NOTES
F. REFERENCES
G. FLOW CHART FOR P3DR

A. INTRODUCTION

P3DR (Parallel 3D Reconstruction) is a package of parallel programs for three-
dimensional (3D) reconstruction of electron density in Cryo-TEM. It produces a 3D electron
density map from a set of 2D particle projections given the orientation of each projection. The
inputs are:

(1) 2D projections of particles, and
(2) the relative orientation of each projection.
The input 2D particle images and 3D density map data are stored in the Purdue *.PIF

format.
The determination of the electron density at the points of a regular 3D grid of size N3

requires O(N3) arithmetic operations. A technique to embed the pixel frames into larger
arrays, called "zero-fill", helps lower the numerical errors in the reconstruction process, but
increases the amount of space and the number of arithmetic operations. Now it also support
different pixel size and different box size mixed for input 2D images.

P3DR works in Cartesian coordinates, and the calculations are done in the Discrete
Fourier Transform (DFT) domain. First, we compute the 2D DFTs of the particle projections,
apply CTF correction. Then we compute the values of the 3D DFT of the electron density by
interpolate the 2D DFTs into 3D, and finally we apply an inverse 3D DFT to compute the
electron density map. The algorithm does not require the object to exhibit any symmetry, but

it takes advantage of the symmetry, if exists. P3DR is normally run after and in combination
with POD (Parallel Orientation Determination) or POR (Parallel Orientation Refinement).
P3DR has no restrictions as to number of particles or the resolution limit.

A good overview of our algorithms is presented in Marinescu and Ji 2003.
Contact us: yji@cs.ucf.edu, dcm@cs.ucf.edu

B. PROGRAM INPUT

Input parameters control operation of P3DR. They are as follows (Keywords, values, type),
Keywords can be more than 4 chars, but we only match the first 4 char and case ignored;
Values are the values that user input; Type are the type of each values for this keywords;
Keywords that have default value(s) can be omitted if user use the default value(s):
--

SYMM symmetry (I)
RESMAX softborder_res, out_res (F, F)
ZERO_FILL zerofill (F)
CTFMODE ctfmode, filter, temperfac, wiener1, wiener2 (I, F, I, F, F)
MAPSIZE map_magfac, map_dim (F, I)
OUTMODE outmode (I)
ODDEVEN oddeven (I)
OUTFILENAME mapname (C)
VPRD viewpipeline (I)
INPUTPARAMETERFILES

--
1. SYMM symmetry (I)
symmetry = 1 - if no symmetry (DEFAULT value)
 2~8 - if n-fold about z-axis
 532 - if icosahedral
 222,32,52,622,72,822 - if dihedral

2. RESMAX softborder_res, out_res (F, F)

softborder_res specifies the resolution to which the final 3D map will be computed.
softborder_res can't be set to be a value any SMALLER than twice the size of the IMAGE
pixels (the so-called Nyquist limit imposed because the Fourier transform of digitized data
only extends to a spatial frequency of 1.0/(2*pixel size). If you believe your IMAGE data are

mailto:yji@cs.ucf.edu
mailto:dcm@cs.ucf.edu

good enough to achieve higher resolution, you need to rescan the IMAGE at smaller pixel
resolution. The typical rule of thumb is to digitize your IMAGE data at a pixel resolution that
is 3 or 4 times the expected resolution, in which case only information in the Fourier
transform out to a radius of FFT_DIM/3 or FFT_DIM/4 is used. If, for example, you expect
your IMAGE RESOLUTION to be about 2.0 nm, then you would normally digitize at 0.7 nm
intervals (or smaller).

out_res specifies the effective resolution of the out 3D map. out_res must be equal or
larger than softborder_res. Normally out_res is set equal to softborder_res, but it is useful
to make a soft border between out_res and softborder_res for the map to make the map
looks good. The values beyond the out_res will be faded out gradually to 0 at softborder_res
resolution.

3. ZERO_FILL zerofill (F)

zerofill specifiy the ratio of FFT size(FFT_DIM) to the images size. It must greater or
equal to 1.0. For example, if your images size is 221x221, and you want to use FFT size
512x512, then you can set the zerofill to be 521/221 = 2.31. The P3DR programs will
automatically fit the fft size (FFT_DIM) to a proper value near the value imagesize*zerofill.
The FFT_DIM is not confined to be 2**n in our programs.

Since we support different box size and pixel size and map magnifactor, the zerofill will
adjust according to them in program automatically based on the zerofill you input.

Default value: zerofill = 1.0.

4. CTFMODE ctfmode, filter, temperfac, wiener1, wiener2 (I, F, I, F, F)

These parameters are used to affect CTF corrections of the images. The following is a
simple description of the nature of the use of these variables. More information will be
supplied as we become more adept at using CTF corrections with real data.

ctfmode is a switch that signifies the type of CTF correction to make.
ctfmode = 0 - No CTF correction made to the FFT data.
 1 - Full CTF correction (flips phases and modifies amplitudes)
 2 - Only flip phases in the FFTs
 3 - Only modify amplitudes in the FFTs
 4 - Only apply the temperfac in the FFTs
filter = 1 - FFTnew = FFTold / (ABS(CTF) + wiener1*(1-ABS(CTF)) before first peak
 = FFTold*ABS(CTF)/(CTF**2+wiener2*(1-ABS(CTF)) after first peak
 2 - FFTnew = FFTold * ABS(CTF) /(CTF**2 + wiener1*(1-ABS(CTF))

 3 - FFTnew = FFTold * ABS(CTF) /(CTF**2 + wiener1)
 4 - FFTnew = FFTold /(ABS(CTF) + wiener1*(1-ABS(CTF))
 5 - FFTnew = FFTold /(ABS(CTF) + wiener1)

temperfac is a variable that specifies an estimate of the temperature factor for the IMAGE
data. Values in the range of 200 to 500 Angstroms square are typical. However, it is
recommended that you NOT enter a value for temperfac until you are trying to refine your
3D density map. Hence, temperfac should normally be set = 0.0.

wiener1 and wiener2 are the factor to make sure noise is not magnified too much near the
nodes of the ctf. They are associated with the filter. wiener are typically set to 0.1. Use values
less than 0.1 at your OWN RISK. Values greater than 1.0 are also not recommended!

5. MAPSIZE map_magfac, map_dim (F, I)

map_magfac is used to adjust the size of pixels in the final 3D density map and also (if
map_dim = 0) will automatically resize the dimensions of the 3D map according to the image
size and map_magfac. Default value (map_magfac = 1.0, map_dim = 0) will make a 3D
density map with pixels identical to the minimum pixel size of the input IMAGE data and the
map will have NCOL**3, dimensions, where NCOL is the maximum dimension size of the
input IMAGE data. Set map_magfac > 1.0 if you wish to produce a larger than normal
reconstruction. That will get smaller pixels size MAP to achieve much nicer 3D rendering
effects for making high quality figures for slides or publication. For example, if map_magfac
= 2.0, the final 3D map will have dimensions = 2*NCOL+1 and pixel size which is half of
original pixel size. Under these conditions P3DR will take considerably longer than normal to
finish and may 'consume' very large amounts of disk space to store the finely sampled output
map.

map_dim can be used to specifically fix the dimensions of the 3D map and thereby
override the effects of any change in map dimensions brought about by using a value for
map_magfac other than 1.0. Though not likely to be used too often, map_dim adds
flexibility to how you create output 3D map data. map_dim may also be used to keep the
dimensions of the 3D output map constant, while at the same time allowing the pixel size of
the 3D map data to be magnified or demagnified according to the value of map_magfac. If
map_dim = 0, the program will adjust the size of the 3D output map according to the value of
map_magfac and the input IMAGE dimensions. For example, you may choose to calculate a
3D map with, say map_magfac = 0.75, but with map_dim set equal to the size the original
3D map. This would give a 3D map in which the reconstructed particle would appear shrunk
by 25% but still inside a 3D box of dimensions equal to the dimensions of the original input
IMAGE data. Beware of possible "side effects" of map_dim, for example if you set it too

small depending on what map_magfac is set to, the map may be cut off beyond a radius that
lies within the particle!

Default value: map_magfac = 1.0, map_dim = 0

6. OUTMODE outmode (I)
outmode = 20 - 2-byte methods (default value)
 = 40 - 4-byte methods

outmode is the output mode of 3D density map. If outmode = 20, it will store the 3D map
using 2-byte methods. If outmode = 40, it will store the 3D map using 4-byte methods, and it
will also double the size of output 3D map compared with the 2-byte method.

7. ODDEVEN oddeven (I)
oddeven = 0 - use all set of images to compute MAP (DEFAULT value)
 = 1 - use only odd set of images to compute MAP
 = 2 - use only even set of images to compute MAP

When oddeven = 1 or = 2 then only EVERY OTHER image in the total input set of
images is used for the calculation of the 3D map. Note that "odd" or "even" does NOT mean
that images are selected according to particle ID, but instead just means that the particle
images are selected according to the SEQUENCE in which they are read from the PARAM
file(s). For example, if your FIRST PARAM file only lists particles with even-numbered IDs
(e.g. 22, 34, 36, 58, 100, 268, 982, 1046, etc.) and oddeven is set = 1, then only the images
with ID #s 22, 36, 100, 982, etc. will be used. Also, if in this last example, the PARAM file
was instead the 2nd PARAM file listed in the P3DR control file AND the first PARAM file
specified an odd number of images, then only images with ID #s 34, 58, 268, 1046, etc. would
be selected from this PARAM file. This strategy assures that, no matter how many PARAM
files there are and no matter what the particle IDs are, the number of images selected will
always be equal to or within one of being half of the total number of images listed in the
PARAM files.

8. OUTFILENAME mapname (C)

Specify the name of output 3D density map which store in PIF format.

9. VPRD viewpipeline (I)

It is the pipeline for read images. It means how many images are read for each node per
time. For example: if viewpipeline = 3, and nodes number is 8, then each time node 0 will
read 3*8=24 images, and send each node with 3 different images. After each node finish the 3

images, then node 0 will read another 24 images again, and send each node with 3 new
images for processing. This will save some reading images time, and in some degree to make
all the nodes balance their load. You can specify viewpipeline as large as you can, and the
programs will automatic adjust according to the image number in files and processor number.
Just remember, this will consume more memory.

Default value: viewpipeline = 3.

10. INPUTPARAMETERFILES

Enter the names of up to 999 different PARAM files, each one on a new input line. A
description of the contents of PARAM files is given: The 1st line of each PARAM file should
list the name of the IMAGE file which contains raw image data stored in *.PIF format. The
2nd line in each PARAM file contains the values of: PIXSIZ, UNITS, VOLTAGE,
AMPFAC, DELF_MAJ, DELF_MIN, ANG_MAJ, and CS_COEFF. The remaining lines in
each PARAM file contain the current set of ID, THETA, PHI, OMEGA, X, Y, MAG_FAC,
et al. values for specific particles in the raw image file. MAG_FAC defaults to be 1.0 if no
value or 0.0 is supplied.

ID is the image number--the storage sequences in the IMAGE data.
THETA, PHI, OMEGA are the three orientation angles (in degrees) for each image.
FFT_ORIGX, FFT_ORIGY are the pixel coordinates of the particle center (the point

0.0, 0.0 corresponding to the lower left corner of the boxed particle image).
MAG_FAC specifies the size of each particle image relative to some standard, such as a

3D reconstruction model. Hence, a MAG_FAC = 1.02 means that the particle image is 2%
larger than the model. P3DR uses this value to assure that all particle transforms are sampled
so the data are all combined at a uniform magnification. With images of frozen-hydrated
particles boxed from a single micrograph, MAG_FAC = 1.0 (DEFAULT) is normally
assumed for all particles.

Since we can handle different box size and pixel size, so each image file can have
different pixel size and box size of image. The final 3D map will use the smallest pixel size
and biggest box size if no mapsize is specified

C. EXAMPLE P3DR INPUT CONTROL PARAMETERS
FILE

Initial with # is a comment line. The format is Keyword and follows by value(s).
Keywords can be more than 4 chars, but we only match the first 4 char and case ignored.
1. SYMM is used for define symmetry of the object (Default value is 1), (I)
SYMM 532

2. RESM is used for define resolution range, (2F)
in P3DR, the output map resolution should be up to the 2nd value,
and from the 2nd value down to the 1st value is a soft border region
Resmax 9.8, 10.
3. ZERO specifies FFT size enlarge ratio, FFT_DIM = box_size * Zero_fill, (F)
Default value is 1
Zero_fill 1.15
4. CTFM specifies CTF correction parameters,
CTFMODE, Filter, TEMPFAC, WIENER, WIENER2 (2I,3F)
Ctfmode 1, 4, 0.0, 0.05, 0.1
5. MAPS specifies the mapmagfactor and the dimension of output map in pixel, (F,I)
Default value is 1.0 and the pixel size of input image.
Mapsize 1.0, 257
6. OUTM specifies the output mode, (I)
20: 2-byte density map; 40: 4-byte density map. Default value is 20
Outmode 20
7. OUTF specifies the output map file name, (C)
Outfilename indbis-e2-n318q.map
8. ODDE specifies to generate density map with odd, even, all images, (I)
odd = 1, even =2, all = 0. Default value is 0.
Oddeven 0
9. VPRD specifies the pipeline size, (I) Default value is 3.
Vprd 10
10. INPU is the keyword for input orient files. (C)
only orientation file names are allowed, no space line, no comment line or others.
Inputparameterfiles
8824.sel_003
8825.sel_003
8826.sel_003
8827.sel_003

For example: a simple control file:
SYMM 532
Resmax 7.37, 7.37
Zero_fill 2.0
Ctfmode 1,1, 0.0, 0.1, 0.1
Outfilename rec.pif

Inputparameterfiles
8824.sel_003
8825.sel_003

D. PROGRAM EXECUTION

Normal operation of P3DR leads to a 3D density map that contains the entire
reconstructed particle. All parameters with default values can be omitted in the input control
parameter file, such as SYMMETRY, ZERO_FILL, MAPSIZE, OUTMODE, ODDEVEN,
VPRD. P3DR programs will automatically assign them with default values if these keywords
are omitted.
For example:
 Execute P3DR with 40 nodes using MPI, the command will be:
 % mpirun –nolocal -machinefile mach -np 40 P3DR < Ctrl.p3d > Output
 or
 % mpirun -np 40 P3DR < Ctrl.p3d > Output

Ctrl.p3d is the script of the input control parameters file, and the Output file will be all
the output debug information generated by P3DR standard output. We use I/O redirect
methods. The mach file is used for specifying the hosts of the cluster that you want to use.
Please modify it to indicate the host names of your cluster. If use second command, it will use
the default machine configuration under MPICH directory.

For details of running MPI and specifying hosts in the host file, see user guide of MPICH
at http://www-unix.mcs.anl.gov/mpi/mpich/.

E. PROGRAM NOTES

The directories of P3DR source code are:

|-- Commpk !common routine directory
|-- P3DRsrc1 !P3DR algorithm 1(whole fft map, less communication)
|-- P3DRsrc3dm !P3DR algorithm 1 with double precision memory
|-- P3DRsrc3 !P3DR algorithm 3(less memory, more communication)
|-- P3DRsrc3dm !P3DR algorithm 3 with double precision memory
|-- Vfftpk !FFT library codes directory
|-- include !include files directory
|-- Makefile

We have 4 P3DR programs. P3DRsrc1 and P3DRsrc1dm using algorithm 1, which stores
half of the 3D DFT space on all the nodes, and have less communication (only exchange data
at the end of interpolation of all images). P3DRsrc3 and P3DRsrc3dm using algorithm 3,
which divides the whole 3D DFT space by number of nodes into slab, and each node only
store a slab, so it will consume less memory space, but it will have more communication
(exchange data at the end of interpolation of each image). Also, P3DRsrc1 and P3DRsrc3 use
single precision during interpolation. P3DRsrc1dm and P3DRsrc3dm use double precision
during interpolation, and this will increase the precision, but will use more memory during
interpolation (about 8 times).

1. CTF Factor Formula:
 CTF = -[sqrt(1 - amp_fac**2)*sin(chi) + amp_fac*cos(chi)]
 CTF = CTF * Es * Et
 TMP = 10 / fft_dim / pixel_size
 D_STAR = Sqrt(x**2 + y**2) * TMP
 T = EXP ((TEMPFAC/400.0) * (D_STAR**2))
 enlargefac is the scale factor of all the images to make them comparable.
 CTF_factor = filter 4 if before first peak or filter 2 if after first peak Filter1
 or = enlargefac*T*ABS(CTF) /(CTF**2 + wiener1*(1-ABS(CTF)) Filter2
 or = enlargefac*T*ABS(CTF) /(CTF**2 + wiener1) Filter3
 or = enlargefac*T /(ABS(CTF) + wiener1*(1-ABS(CTF)) Filter4
 or = enlargefac*T /(ABS(CTF) + wiener1) Filter5
 If in the soft border region: (detail see ctf_para.f)
 ds_max = (fft_dim*pixel_size) / out_res
 ds_min = (fft_dim*pixelsize) / softborder_res
 t_max = exp((TEMPFAC/400.0) * (ds_min*tmp)**2)
 delsq = -(ds_max-ds_min)**2 / log(0.000001/t_max)
 CTF_factor = CTF_factor * t_max / T * exp(-(D_STAR - ds_min)**2/delsq)
 Else if beyond the soft border resolution:
 CTF_factor = 0

2. In Fourier Domain: annulus = FFT_DIM * pixel_size / resolution
 annulus <= FFT_DIM / 2
 so: resolution >= 2 * pixel_size

3. Rotmat matrix: ROT_MAT = ROT_1 * ROT_2 * ROT_3
 | cos(theta) 0 sin(theta) |
 rot_1 = | 0 1 0 |
 | -sin(theta) 0 cos(theta) |

 | cos(phi) -sin(phi) 0 |
 rot_2 = | sin(phi) cos(phi) 0 |
 | 0 0 1 |

 | cos(omega) -sin(omega) 0 |
 rot_3 = | sin(omega) cos(omega) 0 |
 | 0 0 1 |

4. FFT transforms used (N is even):

 Analysis: F(h, k)= ∑∑
−

=

−

=

1

0

1

0

1 N

x

N

yN
f(x, y)exp(-2πi(xh+yk)/N)

 Synthesis: f(x, y)= ∑∑
−

=

−

=

1

0

1

0

1 N

h

N

kN
F(h, k)exp(+2πi(xh+yk)/N)

 Translation: g(x, y) = f(x+dx, y+dy) <=> G(h, k) = F(h, k)exp(+2πi(h*dx+k*dy)/N)
 Periodicity: F(h, k) = F(h+N, k) = F(h, k+N) = F(h+N, k+N)
 Conjugate: F*(-h, -k) = F(h, k)
 Scaling: f(ax, by) <=> F(h/a, k/b) / |ab|

5. Interpolation for each 2D DFT image P:
 a. map_magfac: (new 3D DFT F′ after map_magfac)
 F′(h, k, l) = F(h*map_magfac, k*map_magfac, l*map_magfac) * (map_magfac**3)
 = F(h′, k′, l′) * (map_magfac**3)
 b. piecewise constant interpolation:
 F(h′, k′, l′) = P(u′, v′, ∆w) = P(u′, v′, 0) = P(u′, v′)
 c. img_magfac:
 P(u′′, v′′) = P(u′/img_magfac, u′/img_magfac) / (img_magfac**2)
 d. 2D interpolation:

 P(u′′, v′′) = P(u+∆u, v+∆v) = ∆u*∆v*P(u, v) + (1-∆u)*∆v*P(u+1, v)
 + ∆u*(1-∆v)*P(u, v+1) + (1-∆u)*(1-∆v)*P(u+1, v+1)
 e. weight method:
 W(h, k, l) = (1-∆w) * |CTF(u′′, v′′)|
 = (1-∆w) * (∆u*∆v*|CTF(u, v)| + (1-∆u)*∆v*|CTF(u+1, v)| +
 ∆u*(1-∆v)*|CTF(u, v+1)| + (1-∆u)*(1-∆v)*|CTF(u+1, u+1)|)
 f: Ffinal(h, k, l) = Σ (Fi(h, k, l)*Wi(h, k, l)) / Σ Wi(h, k, l)

F. REFERENCES
• Dan C. Marinescu and Yongchang Ji, A Computational Framework for the 3D

Structure Determination of Viruses with Unknown Symmetry, Journal of Parallel
and Distribute Computing, Vol. 63, pp. 738--758, 2003

• Robert E. Lynch, Yongchang Ji, Dan C. Marinescu and Hong Lin, A Parallel 3D
Piecewise Constant Reconstruction Algorithm for Asymmetric Virus Structures, The
International Conference on Computational Science 2003, Saint Petersburg, Russia,
Lecture Notes in Computer Science, Springer-Verlag Heidelberg, vol. 2657, pp. 437-446,
2003

• Dan C. Marinescu, Yongchang Ji, Robert E. Lynch, Space-Time Tradeoffs for Parallel
3D Reconstruction Algorithms for Virus Structure Determination, CP&E, Vol. 13,
pp. 1083--1106, 2001.

• Dan C. Marinescu, Yongchang Ji, Robert E. Lynch, A Comparison of Three Algorithms
for Parallel 3D Reconstruction. High-Performance Computing and Networking: 9th
International Conference, HPCN Europe 2001, Proceedings (B. Hertzberger, A.
Hoekstra, R. Williams, Eds.), Lecture Notes in Computer Science, Springer-Verlag
Heidelberg, vol. 2110, pp. 173-182, 2001

• Robert E. Lynch, Dan C. Marinescu, Hong Lin, Parallel algorithms for 3D
reconstruction of asymmetric objects from electron micrographs, Proc.
IPPS/SPDP'99 San Juan, Puerto Rico, April 12-16, 1999.

• T. S. Baker, N. H. Olson, and S. D. Fuller, Adding the third dimension to virus life
cycles: Three-dimensional reconstruction of icosahedral viruses from cryo-electron
micrographs. Microbiol. Mol. Biol. Reviews 63:862-922, 1999

• R. A. Crowther, L. A. Amos, J. T. Finch, D. J. DeRosier and A. Klug, Three dimensional
reconstructions of spherical viruses by Fourier synthesis from electron micrographs.
Nature, 226:421-425, 1970

G. FLOW CHART FOR P3DR PROGRAMS

P3DR1 !! main program
 |--- call usage !! print out usage
 |--- call mpi_init !! mpi initialization
 |--- call info !! read input control files
 |--- call bcast_parameters !! broadcast parameters
 |--- call intlz_params !! initialize parameters
 |--- call intlz_arrays !! initialize arrays
 |--- For each input orientation files do
 |--- call pif_open !! open image file
 |--- call read_1_pif !! read first image
 |--- call mpi_bcast !! broadcast parameter
 |--- call ctf_para !! initialize CTF factor for this image file

 |--- call cmpt_intrps !! interpolate 3D grid from 2D DFT
 |--- call pif_close !! close image file
 |--- call exch_intp !! exchange 3D DFT
 |--- call fftsynth_1_m_slab !! 2D Fourier synthesis
 |--- call exchange_2_slab !! exchange data for 1D fft synthesis
 |--- call rearrange_2_slab !! rearrange data for 1D fft synthesis
 |--- call fftsynth_2_m_slab !! 1D Fourier synthesis
 |--- call density_clear !! fill in density map and purify the corner
 |--- call output_density !! write out the density map
 |--- call mpi_finalize !! finalize mpi

INFO !! read the input control parameter file
 |--- call symmcode !! calculate the symmetry
 |--- call pfile_info !! read head of each image files

INTLZ_PARAMS !! initialize internal parameters
 |--- call trans_length_essl !! calculate suitable FFT_DIM

INTLZ_ARRAYS !! initialize internal arrays
 |--- call set_indices !! calculate frst_lst_hk
 |--- call set_indices !! calculate frst_lst_y
 |--- call set_indices !! calculate frst_lst_u
 |--- call set_indices !! calculate frst_lst_z

READ_1_PIF !! read the first image to get the std deviation.
 |--- call pif_read_dh !! read the data header of the image file.
 |--- call rpifimag_f !! read the first image in the image file.

RPIFIMAG_F !! read image in the image file
 |--- call pif_read_byte_image !! read 1_byte image in the image file.
 |--- call pif_read_short_image !! read 2_byte short image in the image file.
 |--- call pif_read_boxi4 !! read 4_byte image in the image file.

CTF_PARA !! compute the ctf factor for this image file
 |--- call ctf_astig !! compute defocus value for astigmatic data
 |--- call ctf !! compute CTF at particular spatial frequency
 |--- ctf_es !! exponential decay from spatial coherence
 |--- ctf_et !! exponential decay from temporal coherence
 |--- call ctf_firstpeak !! computer the first peak radius

CMPT_INTRPS !! interpolate 3D grid from 2D DFT
 |--- call readorient !! read orientation file of the image file
 |--- call mpi_bcast !! broadcast the orientation file to all nodes
 |--- for each viewpipeline do
 |--- call set_indices !! calculate frst_lst_view
 |--- call read_files !! read and scatter the images for this pipeline
 |--- for each images on the node do
 |--- call getorient !! get the orientation of this image
 |--- call ico_em4imr !! convert the orientation into unit vector, 532
 |--- call ico_em4imr_vector !! convert the orientation into unit vector, 532
 |--- call setrotmat !! form matrix, map 2D pixel plane with 3D
 |--- call eight_symmetry !! fill in 8 equivalent views for symm 8
 |--- call dihedral_symmetry !! fill in equivalent views for dihedral symm
 |--- call fftanaly !! 2D DFT of the pixel image
 |--- !! apply ctf factor to the 2D DFT
 |--- for each symmetry do
 |--- call setrotmat !! form matrix, map 2D pixel plane with 3D
 |--- call rottrans !! set matrix, determine intersection of 2D and 3D
 |--- call rottrans !! set matrix, determine intersection of 2D and 3D
 |--- call matrixentries_slab !! Interpolation by piecewise constant method
 !! fill in 3D grid from 2D DFT

READ_FILES !! read the image from image file.
 |--- call pif_read_dh !! read the data header of the image file.
 |--- call rpifimag_f !! read one certain image in the image file.

FFTSYNTH_1_M_SLAB !! 2D fft synthesis
 |--- call fftsynth_1_slab !! 2D fft synthesis
 |--- call vrffti !! initialize ffts parameter
 |--- for each section do
 |--- call fftsynth_1_slab !! 2D fft synthesis a section
 |--- call vrfftb !! backward fft transform

REARRANGE_2_SLAB !! rearrange data for 1D fft synthesis
 |--- call move_data_2_slab !! rearrange data for 1D fft synthesis

OUTPUT_DENSITY !! write out the density map
 |--- call pif_init_head !! initialize the pif file head
 |--- call pif_open !! open the pif file for write
 |--- call pif_write_gh !! write the global header of the pif file
 |--- call pif_write_dh !! write the data header of the pif file
 |--- for each section do
 |--- call pif_write_seci4 !! write out 1 section to the pif file in 4-byte
 |--- call pif_write_seci2 !! write out 1 section to the pif file in 2-byte
 |--- call pif_close !! close image file

