
PFTSEARCH.DOC
(last update: August 18, 2004)

CONTENTS
A. INTRODUCTION
B. GENERAL DESCRIPTION OF PROGRAM
C. PFTSEARCH PROCEDURE
D. PROGRAM OUTPUT
E. BATCH JOB PROGRAM INPUT
F. STRATEGY FOR USE OF PFTSEARCH AND EM3DR
G. DISCLAIMER
H. CREDITS
I. FINAL NOTES
J. PROGRAM MODIFICATIONS
K. FLOW CHART FOR PFTSEARCH PROGRAM

A. INTRODUCTION
PFTSEARCH determines orientations (THETA,PHI,OMEGA= θ,φ,ω) and

origin (X,Y) values for particle images. This, of course, is
critically important information for producing a 3D reconstructed
density map from many, independent images. PFTSEARCH uses cross-
correlation procedures to compare unfiltered or filtered particle
images against a database of reference projection views produced from
a 3D density map. The map might be a 3D reconstruction or model, for
example, computed from an atomic, X-ray crystallographic structure.
The last major enhancements to the program included use of compressed
data and the sliding window approach to refinement (released in May
1998) and most recently the use of contrast transfer function (CTF)
corrections as (August 1999).

Use of CTF to assist comparison of image and projection data
The user has three different options for imposing the microscope

CTF on the model projections or raw images with the goal of getting
better refinement of orientation and origin parameters. The user, of
course, has the option (set CTF_MODE = 0) of NOT using the CTF
correction software.

The four CTF options are:
CTF_MODE = 1 Multiply the projections of the 3D model by the CTF.
CTF_MODE = 2 Multiply the raw image data by the CTF.
CTF_MODE = 3 Multiply the raw image data by the inverse CTF.
CTF_MODE = 1 is designed for the situation in which you have

imposed a CTF correction in the 3D map in the program EM3DR. In
theory, PFTSEARCH will work best if the model projections and raw
images are compared ‘apples to apples’. That is to say, by imposing
a CTF onto the model projections, you are trying to recreate what

noise-free data (the model) would look like if the projection
pictures had been recorded in the TEM like the raw particle images.
IMPORTANT WARNING: In PFTSEARCH’s present state use of this option is
ONLY CORRECT for image date from ONE MICROGRAPH. If you are refining
image data from multiple micrographs (with different CTFs), then the
use of CTF_MODE = 1 ***may*** lead to errors in refinement.

CTF_MODE = 2 employs the strategy used by Steve Fuller’s group.
Here, raw images are multiplied by the microscope CTF and this has
the effect of weighting the image data to emphasize the most
significant (i.e. highest S/N) and de-emphasize the least significant
(low S/N) portions of each image. This down weights data near the
nodes of the CTF, precisely where the noise is highest in the image
transforms. So, option 2 weights the data to emphasize the reliable
portions of the image while down weighting the most unreliable
portions. This, in turn, is designed to help the PFT routine perform
a more reliable refinement of orientation and origin parameters.

CTF_MODE = 3 causes each raw image to be multiplied by the INVERSE
CTF as a means to create image data that more properly compares with
the UNMODIFED model projections.

Only careful testing will prove which of the above methods works
best for you or your particular project!

Use of COMPRESSED DATA = faster computations
The basic premise is that, because we normally over sample our

image data when we digitize it so the pixel size is 3-4 times as fine
as the expected resolution, then we can realize significant
computational effort merely by performing operations on compressed
data. Hence, the program switch, BIN, was added to signal PFTSEARCH
to perform its computations on uncompressed data (BIN=1) as before or
much faster on compressed data (BIN=2). Recent improvements in
memory management have even provided modest program speed-up when
PFTSEARCH is run with BIN=1. If BIN=2 (the only other option), then
the 3D map is compressed ~8-fold and hence requires a corresponding
decrease in memory requirements at run time. Because the “volume” of
the compressed 3D map is ~8-fold smaller than that of the original
map, 2D projections of the map are computed about 8 times faster.
The ‘raw’ image data are also compressed as they are read in, which
speeds up by ~4-fold all manipulations of images and PFT data. The
overall improvement in program performance is about 6-8 fold when
BIN=2.

B. GENERAL DESCRIPTION OF PROGRAM
PFTSEARCH performs two types of orientation search. They involve

coarse, GLOBAL searches (MODE=|1| or |2|). Note that negative values
for MODE (-1 or -2) are used to signify that the model projection and
PFT data have already been calculated and stored on disk (using
EMPFTPRJ) and don’t need to be calculated by PFTSEARCH but just read
in. In GLOBAL mode operation, the orientation search for each
particle image is performed over an entire asymmetric unit, typically
in 1° or coarser steps of θ and φ (see Table 1, later). For MODE=|1|

operation (GLOBAL) the particle X,Y origins are unknown or are
ignored, and an initial estimate of each particle origin is
determined with a real space, cross-correlation procedure. This
procedure compares each particle image to a circular average of the
sum of all projection views of the model within the asymmetric unit.
For MODE=|2| operation, the orientation search makes use of the most
recent particle X,Y origin information. In addition, for both MODES
of operation, each particle origin is refined after the θ,φ,ω angles
are determined for each particle. Here, a real-space cross-
correlation of each particle image is made against the corresponding
projected view (at angle θ,φ,ω) of the current 3D model.

PFTSEARCH was designed to replace where possible EMICOFV, which
uses a common-lines procedure. EMICOFV served for many years as the
only means to determine initial orientation parameters for
icosahedral particles. NOTE: PFTSEARCH does NOT replace EMICOFV type
routines when there is no reasonable model 3D data from which a
reference data base can be produced. Thus, EMICOFV (or some variant)
may still be needed when initiating a structure determination for a
new particle whose structure is unknown or differs substantially from
any other previously determined structure and for which no decent
starting model can be produced. The success of PFTSEARCH in part
results because comparisons made between the ‘raw’ particle images
and model projections utilize all the available data, and, in part
because the projection data generally have a high signal-to-noise
(S/N) ratio. In addition, the PFTSEARCH procedure can be sensitized
by selecting just a portion of each image for comparison with the
model data. For example, only information within defined radii in
real or reciprocal space can be utilized in the calculations.

PFTSEARCH computes two types of data from the 3D model:
1. Projections (PRJs) and
2. Polar Fourier transforms (PFTs) of the projections.
These are used as reference data to determine θ,φ,ω,X,Y values for

each 'raw' particle image. The high S/N ratios of the model 3D
density map and the projections computed from it is what makes the
orientation and origin searches work well. However, although this
method is quite robust in analyzing images of many unstained, frozen-
hydrated specimens, success requires the use of model data that
include some elements representative of the correct structure (see
e.g. Baker and Cheng [1996] J. Struct. Biol. 116:120-130).

C. PFTSEARCH PROCEDURE
PFTSEARCH converts each raw image from Cartesian (x,y) to polar

(r,ψ) format by subdividing it into a series of concentric annuli
(each usually exactly one pixel wide). Each annulus is sampled NROT
times, with the interpolation performed at a fine enough interval to
prevent loss of data resolution at the highest particle radius.
Hence, annuli at the lowest radii in the particle image end up way
over-sampled. Each annulus is then separately Fourier transformed to
give the polar Fourier transform (PFT) of the image.

The PFT gives the 1D Fourier transform (power spectrum) of the
density distribution at each radius of the particle. This provides a
particularly useful representation of projection images of spherical
objects and allows rapid and sensitive determination of each particle
θ,φ,ω orientation. Program efficiency arises because the particle
parameter determination is segregated into a few, discrete stages
rather than trying to perform all computations in a single, brute
force step.

When MODE=|1|, the first step is to estimate the X,Y origin for
each particle image by cross-correlating each image with a circular
average of the sum of all model projections in the data set (in
GLOBAL mode, these cover the entire asymmetric unit). NOTE: the
origin of the projection average falls precisely on the central pixel
of the NCOL by NROW projection array. Next, in MODE |1| or |2|, the
values of θ and |φ| are determined. Ambiguity in the sign of φ
corresponds to an ambiguity in knowing the handedness of the
particle. Then, the sign of φ and the ω angle are determined by use
of a rotational cross-correlation algorithm which compares each 'raw'
image with the best matched projected view of the model and its
enantiomer (θ,φ and θ,-φ) in all possible ω orientations. For images
of spherical particles this correlation is typically computed only
for a restricted range of particle annuli, from ANNULUS_LOW to
ANNULUS_HIGH. ANNULUS_HIGH is generally set to a value close to or
just below the outermost radius of the particle. If ANNULUS_HIGH is
set too large, added background noise from outside the particle
reduces the sensitivity of the search procedure. Also, setting
ANNULUS_LOW >> 0 can help in the analysis of images of spherical
viruses because the central portions of the projected images of such
specimens typically contain a significant contribution from non-
icosahedrally ordered material (e.g the genome) and this reduces the
effectiveness of identifying the orientation of the icosahedrally-
ordered portions of the structure.

The PFT correlation procedure works best when the 'raw' image data
are band pass filtered in Fourier space
(RESOLUTION_LOW,RESOLUTION_HIGH) to remove high spatial frequency
noise (RESOLUTION_HIGH) and to remove the spherically symmetric, low
frequency components (RESOLUTION_LOW). PFT data, which are 2D,
include both real and reciprocal space information. These are
usually represented or displayed (ROBEM program) with radius (r)
increasing along the ordinate (vertical) axis and Fourier Bessel
order (n) increasing along the abscissa (horizontal) axis.

As previously stated, GLOBAL searches are mainly designed to
perform a coarse scan of the entire asymmetric unit as a means to
‘jump-start’ the orientation refinement process. Generally, one
cycle each in MODE |1| and MODE |2| ought to be sufficient to get
started so subsequent analysis can be done with the REFINE option
(MODE=3). Tips concerning how to use PFTSEARCH (along with EM3DR) are
discussed in greater detail in section F. Strategy for use of
PFTSEARCH and EM3DR.

Table 1: Positional accuracy of orientation search as function of
particle size

Δ°
D(Å) 2.0° 1.0° 0.5° 0.25° 0.10°

250 8.7 4.4 2.2 1.1 0.43
500 17.5 8.7 4.4 2.2 0.87
1000 34.9 17.5 8.7 4.4 1.75
2000 69.8 34.9 17.5 8.7 3.49

The values in the Table (in Å) represent the distance that points
on opposite sides of a spherical object (diameter, D), appear to move
in the projection plane when the object is rotated Δ°. The following
formula is used to compute this distance:

Point separation =
2πDΔ
360

 Å

D. PROGRAM OUTPUT
The primary output from (also input to) PFTSEARCH is stored in one

or more PARAM files. These contain basic information about each
scanned IMAGE file (pixel size, voltage, etc.) as well as information
about each particle image (ID, THETA, PHI, OMEGA, FFT_ORIGX,
FFT_ORIGY, MAG_FAC, and three different correlation coefficients,
PFTCC, PRJCC, CMPCC). In addition, various statistics on the
correlation coefficients, as a function of radius (PFT.RADS) and as a
function of resolution (PFT.RES1 and PFT.RES2) can be generated and
stored in output files.

Three correlation coefficients (PFTCC, PRJCC and CMPCC) are listed
for each particle in the PARAM file. The first, PFTCC, is a global
correlation coefficient computed between the PFTs of each ‘raw’ image
and its corresponding model projection. PFTCC incorporates the
effects of any radii cutoffs in real-space and resolution limits in
reciprocal space. PRJCC is a global, real-space correlation
coefficient computed directly between each ‘raw’ image (in polar
coordinate format) and the corresponding model projection (also in
polar format). For PRJCC, the coefficient is only computed for data
between radii PFTRAD_LO and PFTRAD_HI. This coefficient is computed
from polar real space data. The third correlation coefficient,
CMPCC, is similar to PRJCC in that the computations are performed on
real space data, but CMPCC uses normal Cartesian (x,y) format image
and model projection data. Note: the values of PRJCC and CMPCC
differ, in part (need to check this) because low radius data are
overweighted in the polar representations of images and model
projections. Though opinions are mixed, the CMPCC correlation
coefficient seems to give the most reliable assessment of particle
quality because PFTCC and PRJCC are more designed to help PFTSEARCH
screen for good θ and φ values (PFTCC) and for good X,Y, and ω values
(PRJCC).

E. BATCH JOB PROGRAM INPUT

Pftsearch now require a keyword organized input. The input is
designed as follows:

keyword = value

where the "keyword" field denotes the data attribute you would like
to set and the "value" field the value to which you would like to set
it. For example to set the BIN_FACTOR you would like to use in
pftsearch to "2" you would enter the following line:

BIN_FACTOR = 2

Normally one would place all the keyword input in an input file and
then pipe that into the program all at one time. For example, if
your input file is named "input.dat" you might run as follows:

% pftsearch < input.dat > pftsearch.log &

with pftsearch.log containing all of the program output during the
run.

The END_OF_KEYS keyword signals the program to stop gathering keyword
input and continue by first gathering parameter filenames.

NOTE: The minimum required input to identify the keyword
is indicated in CAPITAL LETTERS. For example, the keyword
"VERbose" will be recognized if only "VER" appears in
the input stream. All other characters are then superfluous.

1. INPut_mode, BIN_factor, SYMmetry, DELTA_Theta, CTF_Mode, VERbose,
FILTER_FACTOR_1

INPUT_MODE = 1 Global orientation search mode (no input origins)
= -1 Global mode (use stored PFTs/PRJs; no input origins)
= 2 Global mode (use input origins)
= -2 Global mode (use stored PFTs/PRJs; use input origins)

CAUTIONARY NOTE: If you are reading in PFT/PRJ data stored on disk
(generated by EMPFTPRJ), then it is imperative that you specify the
same values for BIN_FACTOR, SYMMETRY, DELTA_THETA, RAD_LO, RAD_HI,
and RAD_STEP that you used in EMPFTPRJ. Otherwise, the program is
likely to crash or perform other unseemly (and unwanted)
calculations.

BIN_FACTOR = 1 Binfactor of 1 (DEFAULT; i.e. no data compression)
= 2 Binfactor of 2 (compresses 3D data eightfold and 2D data

fourfold)
The current limit on BIN_FACTOR is 2.

SYMMETRY = 1 for no symmetry (like a ribosome)
= 2-31 for n-fold cyclic symmetry (about z-axis)
= 532 for 532 icosahedral symmetry (DEFAULT)
= 222 for 222 dihedral symmetry
= 32 for 32 dihedral symmetry
= 422 for 422 dihedral symmetry
= 52 for 52 dihedral symmetry
= 622 for 622 dihedral symmetry
= 72 for 72 dihedral symmetry
= 822 for 822 dihedral symmetry
= 92 for 92 dihedral symmetry

SYMMETRY specifies the point group symmetry of the particle you
are studying. The program searches one-half of the asymmetric unit
appropriate for the chosen symmetry. The available symmetries are
listed above.

In all search modes the half asymmetric unit (ASU) defines the
limits of the search area. Orientations that stray outside the half
ASU are folded back to the equivalent view within the ASU. The
limits of the half ASU for various symmetries are as follows:

Symmetry θ min θ max φ min φ max

1 0.0 90.0 -180.0 180.0
5 0.0 90.0 -36.0 36.0

422 0.0 90.0 0.0 45.0
52 0.0 90.0 0.0 36.0
532 69.09 90.0 0.0 31.71

DELTA_THETA is used to specify the step size in the θ and φ
directions (in degrees: DEFAULT = 1.0). The step size in the θ
direction remains constant (= DELTA_THETA) but it varies in the φ
direction from a smallest value (= DELTA_THETA) when θ=90° (at the
'equator') and increases thereafter for progressively smaller values
of θ . Varying the φ step size assures uniform sampling of the ASU in
regions where θ is <90°. The step size in the φ direction is given by
the formula:

DELTA_THETA/sinθ
If the φ step size was not varied as given in the above formula,

the grid sampling would be much too fine near the ‘poles’. When
θ approaches 0° or 180° (N and S poles), the program adjusts the φ
step size to maintain even sampling. For example, at θ = 30°, the φ
step size will be twice DELTA_THETA (i.e. 2.0° if DELTA_THETA is 1.0°,
since {1.0/sin(30°)}=2.0).

The value you choose for DELTA_THETA has a tremendous impact on
PFTSEARCH run time. As Table 1 showed (Section C.), it makes no
sense to set this parameter very small, especially at the beginning
of data analysis when GLOBAL orientation searches are performed.
Table 2 demonstrates how the number of program calculations

significantly increases as DANG is decreased. Also, Table 2 clearly
demonstrates how the “problem” becomes even more severe in the case
of particles with lower symmetry.

Table 2: Number of views per ASU as a function of particle
symmetry and orientation search angle increment (Δ°)

Point Group Symmetry
Δ° 532 52 5 1

3.00 48 266 519 2,353
2.00 91 573 1,127 5,253
1.00 370 2,173 4,309 20,809
0.50 1,430 8,471 16,869 82,869
0.25 5,606 33,439 66,733 330,751
0.10 34,327 207,358 414,353 2,064,448

CTF_MODE determines if and how the CTF is used. Note: It only
makes sense to use this option IF the 3D model is a CTF-corrected
map. If the map is an uncorrected one, then the use of CTF_MODE = 1
or 2 will force the program to compare CTF-modified and CTF-
unmodified data, which is undesirable and may lead to undetermined
errors in refinement. The values of CTF_MODE may be set as follows:

CTF_MODE = 0 No CTF modifications to the data are made.
= 1 Projections of the 3D model are multiplied by the CTF,

and these are compared to the unmodified, raw images.
= 2 The raw images are multiplied by the CTF, and these are

compared to unmodified projections of the 3D model.
= 3 The raw images are multiplied by the INVERSE CTF, and

these are compared to unmodified projections of the 3D
model.

VERBOSE signals PFTSEARCH to generate various forms of output:
VERBOSE = 0 Minimal output (refined orientations and origins)

= 1 Correlation coefficients are computed as functions of
radius and resolution and results are stored in output
files PFTSEARCH.RADS, PFTSEARCH.RES1, PFTSEARCH.RES2.

= 2 Same as VERBOSE=1, but also gives correlation
coefficients for each particle view

2. PFTRAD_LO, PFTRAD_HI, PFTRAD_STEP, ANNULUS_Low, ANNULUS_High,
RADIUS, TEMperature_factor (3F,3I,F)

These variables (real space pixel units) define the annular
portion of the projected data (PFTRAD_LO to PFTRAD_HI) to be used in
the PFT calculations. PFTRAD_STEP sets the radial step interval and
hence determines the number of annuli in each PFT (NANNULI =
[[PFTRAD_HI-PFTRAD_LO]/PFTRAD_STEP] + 1). PFTRAD_LO is normally left
= 1.0 and PFTRAD_HI is usually set to a value just larger than the
particle boundary (but usually much smaller than NCOL/2 if you boxed

the original particle images conservatively). Use PFTRAD_LO > 1.0
if you suspect that the projected data at higher radii (i.e.
projection only of outer capsid features) will give a more sensitive
measure of the orientation parameters.

PFTRAD_LO can't be set lower than 1.0 because the center of the
projected view doesn't change with orientation and hence gives no
useful information for the PFT calculations. The default for
PFTRAD_HI is (NCOL+1)/2, but note that this will generally be too
large especially if the particle boxing was performed conservatively.

PFTRAD_STEP is normally left = 1.0. Using a larger value will
reduce the number of computations (smaller NANNULI) but use
cautiously (especially if BIN_FACTOR=2) so you don't sample the data
too coarsely. If PFTRAD_STEP is < 1.0, you may make needless
calculations (NANNULI too large), especially if BIN_FACTOR=1 and the
images were digitized at a pixel resolution at least twice as fine as
the expected resolution limit. NOTE: This variable is slated for
removal in the future.

ANNULUS_LOW,ANNULUS_HIGH define the range of annuli from the real
space polar coordinate image and projection data that are included in
the calculations. The best way to determine optimum values for these
parameters is to run PFTSEARCH with the initial DEFAULT values
(0,NANNULI-1), and check the output file PFTSEARCH.RADS to see the
correlation coefficients a function of radius. The average
correlation coefficient typically undergoes a large drop near the
outer edge of the particle (ANNULUS_HIGH). Also, the correlations
are generally lower at low radii (ANNULUS_LOW) corresponding to the
'core' part of the structure. Thus, ANNULUS_LOW and ANNULUS_HIGH may
require some fine tuning to optimize the orientation and origin
search procedure.

The chosen bin_factor value (Line #1) does not change the entered
value of PFTRAD_LO, PFTRAD_HI, ANNULUS_LOW and ANNULUS_HIGH.
Conversions are made automatically by the program.

RADIUS and TEMPERATURE_FACTOR not used by PFTSEARCH, they are
placeholders for compatibility with other programs such as OOR.

3. RESOLUTION_LOW, RESOLUTION_HIGH, JCUT, SIG, DELTA_XY,
NUM_DELTA_XY, DELTA_Omega, NUM_DELTA_Omega (2F,I,5F)

RESOLUTION_LOW and RESOLUTION_HIGH define the lower and upper
resolution limits of the data to be included in the calculations.
These program input variables should be specified in the same units
as PIXSIZE, where PIXSIZE is the size of each pixel in the digitized
images and is specified for each image in the corresponding PARAM
file. PIXSIZE may be defined in any units you choose (Å, nanometers,
pixels, yards, etc.) but you MUST be consistent and use the same
units to define PIXSIZE, RESOLUTION_LOW and RESOLUTION_HIGH. A value
of RESOLUTION_HIGH smaller than 2*PIXSIZE (the DEFAULT) is
disallowed (this would exceed the Nyquist limit which is two-pixel
resolution). You should treat this value for RESOLUTION_HIGH as an
absolute lower limit, which, if used, is likely to be an unrealistic

value for real (i.e. noisy) data. Hence, use careful judgment in
setting the value of RESOLUTION_HIGH.

The DEFAULT for RESOLUTION_LOW [IDIM1*PIXSIZE] is probably
unrealistically large. Again, PFT works best if some of the low
resolution data are ignored. This is because, for example, for
particles with icosahedral symmetry the very low resolution data only
carry information about spherical symmetry and little if any
information about icosahedral symmetry. General rule of thumb: set
RESOLUTION_LOW to a value no smaller than one-fifth the size of the
particle diameter. For example, if the particle diameter is 500Å,
then a value for RESOLUTION_LOW of 100Å might be an appropriate
starting point for PFTSEARCH. If you prefer to specify PIXSIZE in
pixel units (instead of Å or another unit), and the pixel size of the
digitized image corresponds, for example, to 3.86Å units, then
RESOLUTION_LOW would be 25.9 (=500/(5*3.86).

REMINDER: Use good judgment in setting the above program
variables!!! The success or failure of PFTSEARCH may very well
depend on your ability or lack thereof to set these values.

JCUT specifies the minimum rotational Bessel order (Jn) to include
in the calculations. The DEFAULT (=1) omits the Jo term, which is
recommended in analyzing icosahedral particles because this removes
the spherically symmetric image components and boosts the sensitivity
of determining icosahedral orientations. To include Jo, set JCUT to
any negative value. To cut out higher orders, JCUT is set to a value
greater than 1 (NOTE: to my knowledge, no one has ever carefully
tested the effects of doing this).

SIG allows the program to filter the PFT data on the basis of the
variance of the PFT data. In theory, this option should greatly
sensitize PFTSEARCH. However BE FOREWARNED: this option is still
UNTESTED so it may not and probably does not work!!! SIG specifies
the threshold for the variance mask. With SIG=0.0 (DEFAULT), the
masking option is disabled.

DELTA_XY, NUM_DELTA_XY, DELTA_OMEGA and NUM_DELTA_OMEGA not used
by PFTSEARCH, they are placeholders for compatibility with other
programs such as OOR.

4. MAG_CEN, MAG_STEP, MAG_NUM, MAG_NORM (2F,2I)
These program input parameters are used to direct the

magnification factor refinement and CMP correlation coefficient
(CMP_CC) calculations.

MAG_CEN specifies the midpoint of the magnification scale factor
search. The program tests for magnification factors that are
(MAG_NUM-1)/2 steps above and below MAG_CEN. Set MAG_CEN = 0.0 or a
negative number to force the program to use the MAG factor for each
image as stored in the PARAM input data file. Hence, when any
positive value of MAG_CEN (e.g. 1.0) is chosen, the MAG search
“window” for all images will be over the same range. *** NEED TO
CHECK THIS OUT ***

MAG_STEP defines the grid size of the magnification search. A
value of MAG_STEP = 0.005, for example, corresponds to 0.5%
increments.

MAG_NUM establishes the extent of the magnification search
“window”. This should be an odd integer > 0. For example, with
MAG_CEN = 1.0, MAG_STEP = 0.005, and MAG_NUM = 11, the search window
will encompass magnification factors ranging between 0.975 and 1.025.
Entering '1' will force MAG to be either MAG_CEN or the value read
from the PARAM file (which occurs whenever MAG_CEN is set ≤ 0.0).

MAG_NORM is a switch used to normalize the MAG scale factors so
that the average MAG is 1.0. This occurs only when MAG_NORM is set
equal to 1, otherwise, the MAG values determined by the program are
output without being normalized.

5. MAP_filename - 3D model input filename (A FORMAT)
Enter the name of the file that contains the 3D model from which

new PRJs and PFTs are to be calculated. Note: PFTSEARCH currently
only works if the dimension (NCOL_MAP = NROW_MAP = NSEC_MAP) of the
3D model exactly matches the image dimension.

6. PRJ_filename - PRJ input filename (A FORMAT)
Enter the name of the file that contains the model projection data

(DEFAULT = PFT.PRJS). This data is only read in if MODE = -1 or MODE
= -2, otherwise the program calculates what it needs at run time.

7. PFT_filename - PFT input filename (A FORMAT)
Enter the name of the file that contains the model PFT data

(DEFAULT = PFT.PFTS). This data is only read in if MODE = -1 or MODE
= -2, otherwise the program calculates what it needs at run time.

8. PFTRADS_filename - empft.rads filename (A format)
 Enter the name of the file that will contain the radial
distribution of correlation coefficients.

9. PFTRES1_filename - empft.res1 filename (A format)
 Enter the name of the file that will contain the distribution of
cross correlation coefficients PMAP versus POLAR_PRJ.

10. PFTRES2_filename - empft.res2 filename (A format)
 Enter the name of the file that will contain the distribution of
cross correlation coefficients filtered PMAP versus POLAR_PRJ.

11. PARAM input filename(s) (A FORMAT)
Enter the names of up to 999 PARAM files, with each filename on a

new input line. The format of each PARAM file is:
LINE INPUT
1 IMAGE filename (A)

This is the name of the IMAGE file which contains byte-packed
raw image data stored in *.PIF format.

2 PIXSIZE, UNITS, VOLTS, AMP_FAC, DELF_MAJ, DELF_MIN, ANG_MAJ,
Cs (F,I,6F)

PIXSIZE = pixel size for data in IMAGE file. May be
specified in any units (e.g. Å, nanometers,
pixels, etc.) as long as you make sure to specify
the correct value for UNITS.

UNITS = specifies the units assigned to PIXSIZE. UNITS is
defined as follows:

= 0 assumes PIXSIZE is given in dimensionless pixels
= 1 assumes PIXSIZE is given in Ångstroms
= 2 assumes PIXSIZE is given in nanometers

VOLTS = microscope voltage (in volts) for the image data
in the IMAGE file.

AMP_FAC = amplitude factor. For cryoEM data, a DEFAULT value
of 0.07 is reasonable and anything above 0.15
might be suspicious.

FOCUS_MAJ = defocus value (µm) along the major axis of
astigmatism. Note: Positive values are used to
designate underfocus.

FOCUS_MIN = defocus value (µm) along the minor axis of
astigmatism.

ANG_MAJ = angle between major axis and X-direction in FFT,
measured positive in a counter-clockwise direction
(X-axis = 0.0)

Cs = spherical aberration coefficient (mm) for the
microscope used to record the data in the IMAGE
file.

3 ID, THETA, PHI, OMEGA, FFT_ORIGX, FFT_ORIGY, MAG_FAC, PFTCC,
PRJCC, CMPCC (I,9F)

ID = specifies the particle # in the *.PIF
format IMAGE file.

THETA,PHI,OMEGA = orientation of particle #ID
FFT_ORIGX,FFT_ORIGY = center of particle #ID (FFT

coordinates)
MAG_FAC = scale of particle #ID relative to a

standard (model)
PFTCC,PRJCC,CMPCC = three correlation coefficients

N+2 Same as #3 for as many particles (N) as needed.
Some parameters may equal 0.0 or may be left blank depending on

the stage of the analysis. For example, when PFTSEARCH is first run

(MODE=1), the PARAM file will simply consist of the first two lines
as outlined above. There will be ABSOLUTELY NO lines of particle
data (or they will be ignored in MODE=1) because PFTSEARCH performs a
global search of ALL particle images in the PIF format IMAGE files
specified in line #1 of each PARAM file. The first run of PFTSEARCH
creates a PARAM file with the first set of ID, THETA, PHI, OMEGA, X,
Y, MAG_FAC, PFTCC, PRJCC, and CMPCC values.

PFTSEARCH outputs a new PARAM file for each one used as input.
The new PARAM data files are named with a specific convention: a
"_00#" is tagged after each input PARAM filename. For example,
suppose you had but one input PARAM file named "MYDATA.DAT_000".
Then, the name of the output PARAM file would be "MYDATA.DAT_001".
Normally you would use this file as the input file for the next run
of PFTSEARCH, in which case the subsequent PARAM file would
automatically be named "MYDATA.DAT_002", and so forth. The
importance of understanding the way this works is crucial! If, by
'accident', you forget to update the correct PARAM filename in your
BATCH COMMAND PROCEDURE file prior to the next cycle of PFTSEARCH
(e.g. leaving the name "MYDATA.DAT" in the command file), the output
will end up in a file named "MYDATA.DAT_001" INSTEAD of
"MYDATA.DAT_002".

FINAL NOTE: if you use several PARAM files as input to PFTSEARCH,
then use some rational naming system so the output files will be
clearly distinct from the input files. Here's one example in which
hypothetical PARAM files for four different micrographs are used:

PFTSEARCH
Cycle# Input PARAM filenames Output PARAM filenames

1 HSV_1856.DAT_000 HSV_1856.DAT_001
HSV_1858.DAT_000 HSV_1858.DAT_001
HSV_1900.DAT_000 HSV_1900.DAT_001
HSV_1989.DAT_000 HSV_1989.DAT_001

3 HSV_1856.DAT_001 HSV_1856.DAT_002
HSV_1858.DAT_001 HSV_1858.DAT_002
HSV_1900.DAT_001 HSV_1900.DAT_002
HSV_1989.DAT_001 HSV_1989.DAT_002

2 HSV_1856.DAT_002 HSV_1856.DAT_003
HSV_1858.DAT_002 HSV_1858.DAT_003
HSV_1900.DAT_002 HSV_1900.DAT_003
HSV_1989.DAT_002 HSV_1989.DAT_003

!**
!* Example PFTSEARCH BATCH JOB run in GLOBAL MODE with *
!* PFT data read in from disk file (MODE = -1) and *
!* using compression factor of 2 (BIN_FACTOR = 2) and *
!* normalizing the MAG scale factors (MAG_NORM = 1) *
!* and using data from three PARAM files. *
!**
-1, 2, 532, 1.0, 0, 0
1.0, 46.0, 1.0, 0, 46, 0, 200.0
200., 40., 1, 0.0, 0.7, 4.0, 0.9, 3.0

0.0, 0.005, 11, 0
HSV.PIFMAP
HSV.PRJS
HSV.PFTS
Empft.rads
Empft.res1
Empft.res2
HSV_1856.DAT_000
HSV_1858.DAT_000
HSV_1989.DAT_000

Point to appropriate directory:
% cd ~tsb/v/hsv/test

Run pftsearch with the file created above ("pftsearch.bch") and
create log file "pftsearch.log":
% pftsearch < pftsearch.bch > pftsearch.log &

F. STRATEGY FOR USE OF PFTSEARCH, OOR AND EM3DR
The complexity of computing a 3D reconstruction from a set of

cryoEM images means that there is no simple cookbook strategy for
accomplishing this task. Each set of image data presents its own
challenges. Users must be diligent and devise an appropriate
strategy based on several criteria such as size of particle,
magnification of images(s), digitization step size, resolution
range(s) to use, type of specimen (is it a brand spanking new
structure never seen before or one that may be new but closely
related to a virus whose structure is already known?), etc. The day
is yet to come when programs are able to take as input a set of
images and spit out a correct 3D structure! However, ample
experience indicates that the following, general strategy may prove
useful in many applications:
1. Obtain a 3D density map to use as a starting model.
2. Run PFTSEARCH (GLOBAL MODE=1) with BIN_FACTOR=2 and MAG_CEN=1.0.

Use fairly coarse search interval (almost certainly no smaller
than 1° - see Table 1) to obtain the first set of θ,φ,ω,X,Y
parameters.

3. Run EM3DR (BIN_FACTOR=2) to compute a new 3D map from images with
the set of θ,φ,ω,X,Y parameters obtained in Step #2.

4. Run PFTSEARCH (GLOBAL MODE=2) with BIN_FACTOR=2, using the same
search interval as in step #2 to obtain new θ,φ,ω,X,Y parameters.

5. Compare latest θ,φ,ω,X,Y parameters to those found in Step #2.
Examine the three different correlation coefficients (see below)
to detect ‘bad’ particle images and to compare with the
coefficients found in Step #2 (they should, on average, be
better!).

6. Run EM3DR (BIN_FACTOR=2) to compute a 2nd 3D map from images with
the θ,φ,ω,X,Y parameters obtained in Step #4.

7. Run OOR (REFINE MODE=3), using the same search interval as in Step
#2.

8. Repeat steps #6 and 7 for several cycles. With each new cycle you
need to decide whether or not to change program parameters (it is
probably best to stick to ONE change at most per cycle). You may
consider changes such as:
a) Reduce search step size in half. For example, if the step size

was 1° in the previous cycle, reduce it to 0.5° for the next
cycle.

b) Increase the resolution limits of the PFTSEARCH search and/or
EM3DR output (use RESOLUTION_LOW and RESOLUTION_HIGH
variables, see below).

c) Filter out 'bad' particle images from EM3DR.
9. Repeat step #8 for one or two cycles with BIN_FACTOR=1. This is

done mainly to make sure everything is OK. Of course, cycles with

BIN_FACTOR=1 take considerably longer to execute than previous
ones because uncompressed data are used in the calculations. If
you notice any drastic changes in correlation coefficients as
listed by PFTSEARCH or the θ,φ,ω,X,Y parameters suddenly change,
then you may have proceeded too quickly during previous cycles and
may need to back up a few steps before continuing on.

G. DISCLAIMER
To date (5/98) this program has worked quite well in the analysis

of a wide variety of specimen images. The routines seem to work as
long as the starting model as well as subsequent reconstruction maps
are on track. If your starting model is seriously flawed, don't
expect miracles! Also, for particle image data that exhibits very
weak enantiomorphic features, the model must include some correct
enantiomorphic character or the refinement will lead to a 3D map
that exhibits mirror line symmetry about the equatorial line. In
our experience this has not been a problem for icosahedral particles
with handed surface lattices (e.g. T=7 papovaviruses) because the
arrangement of morphological units is clearly enantiomorphic even at
very low resolution (>50Å). In many instances, enantiomorphic
features do not become apparent until much higher resolutions (<30-
40Å), and therefore proper refinement of data cannot proceed until
the model incorporates information at the higher resolutions. In
tricky situations, it is still advisable to use programs like
EMICOGRAD with small data sets (5 particles or less) to try and make
sure that the particles are oriented with respect to a consistent
hand. A crude 3D reconstruction computed from such a limited data
set, although noisy, may give a much better model for further
refinement with PFTSEARCH.

H. CREDITS
The original code for PFTSEARCH was developed by T. Baker in ~1988

and tested in a class project by J. Tesmer in ~1990. R. H. Cheng
performed more extensive and rigorous tests which led to a full scale
working version of the program in 1993. A description of the program
as used during the period from about 1993 up through 1997 appears in:
Baker, T. S. and R. H. Cheng (1996) A model-based approach for
determining orientations of biological macromolecules imaged by
cryoelectron microscopy. J. Struct. Biol. 116:120-130.
Some preliminary discussion of the routine also appears in:

Cheng, R. H., V. S. Reddy, N. H. Olson, A. J. Fisher, T. S. Baker,
and J. E. Johnson (1994) Functional implications of quasi-
equivalence in a T=3 icosahedral animal virus established by cryo-
electron microscopy and X-ray crystallography. Structure 2:271-282.
A number of people have and continue to make valuable additions/

corrections/suggestions to PFTSEARCH. These include (among others
and in alphabetical order), Robert Ashmore, Steve Walker, Wei Zhang
at Purdue, David Belnap and James Conway (NIH), and Stephen Fuller
(EMBL).

We acknowledge with thanks permission to use an interpolation
subroutine supplied by Michael Unser (NIH). This routine is
described in:
M. Unser, A. Aldroubi, and M. Eden (1991) Fast B-Spline transforms
for continuous image representation and interpolation. IEEE Trans.
Pattern Anal. Machine Intell. 13(2):277-285.

I. FINAL NOTES
1. PFTSEARCH currently ONLY works with cubic 3D MAP data

(NCOL=NROW= NSEC). Also, the program expects ALL particle
images to have the same dimensions (NCOL x NROW) as in the 3D
model.

2. DEXTRO3:[TSB.FOR]PFT.BCH is an example BATCH command file used
to run PFTSEARCH.

J. PROGRAM MODIFICATIONS
The following gives a history of significant changes that have

been made to the program. More recent changes can be found in the
header of the program itself.

DATE
MODIFIED

BY
WHOM COMMENT(S)

20-MAY-1995 DMB Added GLOBAL search option
XX-JUL-1996 DMB Added SCALE, CC_CMP, & PFT_CALC_AVGS
xx-JAN-1997 DMB Changed/moved data input & THE,PHI calc.
XX-MAY-1997 RWA/JC Added PIF format
19-DEC-1997 TSB/RWA PIF MAP compatible
23-DEC-1997 TSB/RWA PRJ/PFTS in core
 7-JAN-1998 TSB Implemented BIN mode
 8-JAN-1998 TSB Using MAG instead of SCALE
 9-JAN-1998 TSB PFT_GLOBAL subroutine
15-JAN-1998 TSB/RWA *.PIF input of PFTs/PRJs
19-JAN-1998 TSB Multiple param file input capable
 4-FEB-1998 TSB Read/store parameter data in arrays
 6-FEB-1998 TSB Add MAG normalization
11-FEB-1998 TSB Add DMB's FLIP changes
 6-MAR-1998 TSB Make UNIX compatible
27-JUL-1999 TSB Incorporate use of CTF as per SBW
25-AUG-1999 TSB Incorporate use of TSB CTF routines
14-NOV-2003 RWA/MBS Port to Linux and Excision of OOR refinement

♦♦
The FORTRAN code for PFTSEARCH is in code archive
(/bio/baker9d3/rwa).
♦♦

K. FLOW CHART FOR PFTSEARCH PROGRAM
** means “see below”; # means end of program; ! signifies no subroutine calls

* MAIN *
* (PFTSEARCH.FOR) *

 *
 * |- GET_NVIEW_MOD - GET_T1T2P1 !
 * |- PIF_OPEN !
 * |- PIF_READ_GH - differentEndian !
 *- INFO -|- PIF_READ_DH ----------------------|- differentEndian !
 * | |- convertBackFloat !
 * | |- PIF_CLOSE !
 * |- PFILE_INFO -|- PIF_OPEN !
 * | |- PIF_READ_GH - differentEndian !
 * |- PIRADDEG !
 * |- FFT_SETDIM_DEF_SAME !
 *
 *- GETMEM0 - MALLOC !
 *
 *- FILL_PARAMS !
 *
 * |- GETMEM1 - MALLOC !
 * |- GET_T1T2P1 !
 * |- CALC_MOD_TPS !
 * |- GETMEM2 - MALLOC !
 * |- PIF_READ_WMAPI2 - PIF_READ_MAPI2**
 * |- PIF_CLOSE !
 * |- STOP_WATCH_START !
 *- GLOBAL -|- GET_PRJSPFTS_G**
 * |- STOP_WATCH_STOP !
 * |- FREEMEM2 - FREE !
 * |- GETMEM3 - MALLOC !
 * |- PFTCC_FILL_G -|- PIRADDEG !
 * | |- PIF_READ_MAPI4**
 * |- GLOBAL_CC**
 * |- FREEMEM1 - FREE !
 * |- FREEMEM3 - FREE !
 *
 *- PARAM_SRT (Lixun’s routine)
 *
 * |- STOP_WATCH_START !
 * |- GETMEM_REFINE - MALLOC !
 * |- PIF_READ_WMAPI2 - PIF_READ_MAPI2**
 * |- PIF_CLOSE !
 * |- CALC_TP_MASK - PIF_WRITE_DEBUGI4 - PIF_WRITE_BYTE_IMAGE !
 * |- PIF_WRITE_DEBUGI4 - PIF_WRITE_BYTE_IMAGE !
 * |- GETMEM_REFINE2 - MALLOC !
 *
 *- WRITE_PARAMS - INCREMENT_FNAME !
 *- PIF_CLOSE !

 *- STOP_WATCH_STOP !
 *- CALC_AVGS !
 *- FREEMEM0 - FREE !
 #

===
| |- PIRADDEG !
| |- MAP_CLEAR !
| |- MAP_PRJ -|- MAP_PRJ_XZ --- MAP_CLEAR !
| | |- MAP_PRJ_AXIS - MAP_CLEAR !
| | |- MAP_PRJ_ALL -- MAP_CLEAR !
| |
| |- SAVE_PRJS – MAP_SYM**
|- GET_PRJSPFTS_G -|- MAP_POLAR -|- MAP_CLEAR !
| | |- MAP$POLAR - MAP_POLAR_GRID !
| |
| |- PMAP_FFT - FOURT - L6TO9 !
===
| |- PIRADDEG !
| |- GETMEM4 - MALLOC !
| |
| | |- MAP_CLEAR !
| | |- PIF_READ_MAPI4**
| |- PRJAVG_FFT -|- MAP_FFT_FILL - FFT_CLEAR !
| | |- FFT_2D - FOURT - L6TOL9 !
| |
| |- PIF_OPEN !
| |- PIF_READ_GH - differentEndian !
| |- PIF_CLOSE !
| |- PIF_READ_DH -|- differentEndian !
| | |- convertBackFloat !
| |
| |- PIF_READ_IMGI1 - PIF_READ_BYTESHORT_IMAGE !
| |- IMG_MAP !
| |- MAP_FFT_FILL - FFT_CLEAR !
| |- FFT_2D - FOURT - L6TOL9 !
| |- CTF_MULTIPLY – CTF_ASTIG !
| |- FFT_2D_BACK - FOURT - L6TOL9 !
| |- FFT_MAP_FILL !
| |- MAP_FFT_FILL - FFT_CLEAR !
| |- FFT_2D - FOURT - L6TOL9 !
| |- GET_XY**
| |- INTERP2D (NIH C routine)
| |- MAP_FFT_FILL - FFT_CLEAR !
| |- FFT_2D - FOURT - L6TOL9 !
| |- INTERP2D (NIH C routine)
| |- MAP_FFT_FILL - FFT_CLEAR !
| |- FFT_2D - FOURT - L6TOL9 !
| |
| | |- MAP_POLAR -|- MAP_CLEAR !
| | | |- MAP$POLAR - MAP_POLAR_GRID !
| | |
|- GLOBAL_CC -|- GET_TPO_G -|- PMAP_FFT - FOURT - L6TO9 !
| | |- AVG_PFTIMG !

| | |- GET_THEPHI_G !
| | |- GET_BESTPRJ - PIF_READ_MAPI4**
| | |- GET_PHIOMEGA !
| |- MAP_XFLIP !
| |- COPY_R4 !
| |- INTERP2D (NIH C routine)
| |- MAP_FFT_FILL - FFT_CLEAR !
| |- FFT_2D - FOURT - L6TOL9 !
| |- GET_XY**
| | |- IMG_FFT_FILL - FFT_CLEAR !
| | |- MAP_FFT_FILL - FFT_CLEAR !
| | |- FFT_2D - FOURT - L6TOL9 !
| | |- FFT_LOP !
| |- GET_BESTMAG -|- FFT_HIP !
| | |- FFT_2D_BACK - FOURT - L6TOL9 !
| | |- FFT_IMG_FILL !
| | |- FFT_MAP_FILL !
| | |- INTERP2D (NIH C routine)
| |- LIST_CCS**
| | |- TO_NFOLD !
| |- TO_ASYM_UNIT -|- RETURN_TO_UNIT_TRIANGLE**
| | |- TO_N22 !
| |
| |- FREEMEM4 - FREE !
===
| |- COPY_I2 !
| |- IMG_MASK !
| |- IMG_FFT_FILL - FFT_CLEAR !
| |- FFT_2D - FOURT - L6TOL9 !
| |- COPY_R4 !
|- LIST_CCS -|- MAP_2DMASK !
| |- MAP_FFT_FILL - FFT_CLEAR !
| |- PFTCC_RES !
| |- FFT_FLT -|- FFT_HIP !
| | |- FFT_LOP !
| |
| |- FFT_2DBT -|- COPY_R4 !
| | |- FOURT - L6TOL9 !
| |
| |- IMG_MAP!
| |
| |- MAP_POLAR -|- MAP_CLEAR !
| | |- MAP$POLAR - MAP_POLAR_GRID !
| |
| |- PFTCC_RAD !
===
| |- MAP_CLEAR !
|- GET_XY -|- CCF_FFT - CCF -|- FOURT - L6TOL9 !
| | |- MAP_STATS - MAP$STATS !
| |
| |- PFTCC_PEAK -|- MAP_PEAK !
| |- TRUS_POLYS - TRUS_SOLVE - TRUS_MATINV !

===
| |- MAP_SYM_CAVG - MAP_STATS - MAP$STATS !
| |- MAP_SYM_RAVG -|- MAP_SYM_GRID !
|- MAP_SYM -|- COPY_R4 |- MAP_STATS - MAP$STATS !
| |- MAP_STATS - MAP$STATS !
===
| |- POLAR_TO_COSINES - NORM !
|- RETURN_TO_UNIT_TRIANGLE -|- EQUIVALENT_VIEW -|- CROWTHER_TO_MATRIX !
| |- MATMUL !
| |- MATRIX_TO_CROWTHER !
===
|
|- PIF_READ_MAPI4 - PIF_READ_MAP_INT_IMAGE - differentEndian !
|
===
|
|- PIF_READ_MAPI2 - PIF_READ_MAP_SHORT_IMAGE - differentEndian !
|
===
|
|- PFTCC_R (*** NOT WRITTEN YET ***)
|
===

