EMPFTPRJ .DOC

(last update Aug 4, 1999)

CONTENTS

A. INTRODUCTION
B. PROGRAM INPUT

C. EXAMPLE EMPFTPRJ BATCH JOB
D. FINAL NOTES

E. FLOW CHART FOR EMPFT PROGRAM

A. INTRODUCTION

EMPFTPRJ calculates a database of projection and Polar Fourier
transform data for one half of the appropriate asymmetric unit.
These data can be displayed by ROBEM or used as input to the EMPFT
program (when the value of "MODE" in EMPFT is negative: see
EMPFT.DOC). EMPFT computes exactly the same PFT and PRJ data in
core memory but will NOT output these data for display with ROBEM
or for re-use by EMPFT. Hence, EMPFTPRJ is useful if one wishes
to reuse the PFT and PRJ model data over again.

EMPFTPRJ computes two types of data from a 3D model:

1. Projections (PRJs) and
2. Polar Fourier transforms (PFTs) of the projections.

These are used in EMPFT as reference data to determine THETA,
PHI, OMEGA, X, and Y values for each 'raw' particle image. The
high signal-to-noise ratio of the model density data is what makes
the orientation and origin searches work well. For further details
about the use of EMPFT, please consult the documentation
DEXTRO3:[TSB.FOR.DOC]EMPFT.DOC.

NOTES

EMPFTPRJ currently ONLY works with cubic 3D MAP data (i.e. where
NCOL=NROW=NSEC). Also, the program expects ALL particle images to
have the same dimensions (NCOL x NROW) as in the 3D model.

EMPFTPRJ PROCEDURE

EMPFTPRJ converts each raw image from Cartesian to polar format
by subdividing it into a series of annuli (each usually 1.0 pixels
wide). Every annulus is sampled NROT times, with the
interpolation performed at a fine enough interval to prevent loss
of pixel resolution. Therefore, annuli corresponding to the

lowest radii in the particle image end up significantly over-
sampled. Each annulus is then separately Fourier transformed to
give what we call a polar Fourier transform (PFT) of the image.

The PFT gives the Fourier transform of the density distribution
at each radius of the particle. This provides a particularly
useful representation of the data which allows rapid and sensitive
determination of the particle orientation.

EMPFTPRJ OUTPUT

EMPFTPRJ outputs two files: the model projections (Default name
PFT.PRJS) and the model PFTs (Default name = PFT.PFTS).

B. PROGRAM INPUT

BIN, SYM, DTHE, IRAD LO, IRAD HI (2I,F,2I)
3D MAP filename (A)

PRJs output filename (A)

PFTs output filename (A)

= W N -
e o o

1. BIN, SYM, DTHE, IRAD LO, IRAD HI (2I,F,2I)

w

H

P~
|

= 1 Binfactor of 1 (DEFAULT; i.e. no data compression)

= 2 Binfactor of 2 (compresses 3D data eightfold; 2D data
fourfold)

The current limit on BIN is 2.

SYM specifies the point group symmetry of the particle you are
studying. The program searches one-half of the asymmetric unit.
The following symmetries are available currently:

SYM = 1 for no symmetry
2-20 for n-fold cyclic symmetry (about z-axis)
532 for 532 icosahedral symmetry (DEFAULT)
222 for 222 dihedral symmetry

52 for 52 dihedral symmetry

622 for 622 dihedral symmetry

72 for 72 dihedral symmetry
= 822 for 822 dihedral symmetry

SYM determines the size of the asymmetric unit (hence, search
window) .

DANG is used to specify the step size in the 0 and ¢ directions
(in degrees: DEFAULT = 1.0). The step size in the 0 direction
remains constant (= DANG) but it varies in the ¢ from a smallest

value (= DANG) when 60=90° (at the ‘'equator') and increases
thereafter for progressively smaller values of 0. Varying the ¢
step size assures uniform sampling of the ASU in regions where 0
is <90°. The step size in the ¢direction is given by the formula:

DANG/sinf

IRAD LO and IRAD HI are variables used to define the annular
portion of the projected data that is used in the PFT
calculations. The number of annuli in each PFT (NANNULI =
[IRAD HI - IRAD LO + 1). IRAD LO is normally left = 1 and IRAD HI
is usually set to a value just beyond the particle boundary (but
usually much smaller than NCOL/2 if you boxed the original
particle images conservatively). Use IRAD LO > 1 if you suspect
that the projected data at higher radii (i.e. projection only of
outer capsid features) will give a more sensitive measure of the
orientation parameters (calculated in EMPFT).

IRAD IO can't be set lower than 1 because the center of the
projected view doesn't change with orientation and hence gives no
useful information for the PFT calculations.

2. 3D MAP filename (A FORMAT)

Enter the name of the MAP file that contains the 3D model from
which new projections and PFTs are generated.

NOTE: EMPFTPRJ currently only works if the dimension of the 3D
MAP EXACTLY equals the image dimension.

3. PRJs output filename (A FORMAT)

Enter name of output file for storing model PRJs data (DEFAULT =
PFT.PRJS). Here the data are stored as a pseudo 3D map with each
'section’' being one of the NCOL by NROW dimension projection
images. This file is written in PIF format so the data can be
viewed with the ROBEM program.

4. PFTs output filename (A FORMAT)

Enter name of output file for storing model PFTs data (DEFAULT =

PFT.PFTS). The data here are also stored as a pseudo 3D map with
each 'section' being one of the NROT/4 by NANNULI dimension PFT
'images'. That is, there are NROT/4 values stored per row and

NANNULI rows. Each row is one-half of the unique part of the

Fourier transform of a particular annulus. This file is written
in PIF format so the data can be viewed with the ROBEM program.

C. EXAMPLE EMPFTPRJ BATCH JOB RUN WITH COMPRESSION
(BIN=2)

$ SET DEF DEXTRO3:[TSB.HSV]

$ RUN DEXTRO3:[TSB.EXE]EMPFTPRJ
2, 532, 1.0, 1, 46

HSV.PIFMAP

HSV.PRJS

HSV.PFTS

$ EXIT

D. FINAL NOTES

1. DEXTRO3:[TSB.FOR]EMPFTPRJ.BCH is an example BATCH command file
used to run EMPFTPRJ.

2. Use of BIN=2 is highly recommended, especially in the early
stages of data analysis because tests show that EMPFTPRJ runs
about 8 times FASTER than when run with BIN=1. Since many
people densitometer their data at high pixel resolution (i.e.
with a pixel size that is one third or smaller than the
expected resolution limit of the data) BIN=2 MAY be useful for
all but perhaps the final stages of data analysis
(determination and refinement of particle orientations and
centers).

3. If you are only interested in displaying the projection or PFT
data, you may want to use BIN=1 to get finer sampling of these
data. However, be forewarned that when BIN = 1, four times as
much disk space will be used to store the data.

E. FLOW CHART FOR EMPFTPRJ PROGRAM

kkhkkkhkkkkhkkhkkkhkkhkkkkkikk*

* MATIN *

* (EMPFTPRJ.FOR) *
EE R I S S S S S

*

* - GETNVIEW !

* - PIF_OPEN !

* - PIF_READ GH - differentEndian () !

*- INFO - |- PIF_READ DH —---=——--— |- differentEndian_ ()

* - PIRADDEG ! | - convertBackFloat () !
* - PIF_INIT HEAD !

* |- PIF_WRITE GH !

* |- PIF_WRITE DH !

*

*~ GETMEM - MALLOC !

*

*~ PIF READ MAP SHORT IMAGE () - differentEndian () !

*

*~ PIF_CLOSE () !

*

*~ PFT CALC TP !

* - PIRADDEG !

* - MAP CLEAR !

* - MAP PRJ ----|- MAP PRJ XZ --- MAP CLEAR !

* - MAP PRJ AXIS - MAP CLEAR !

* - MAP PRJ ALL -- MAP CLEAR !

*

* - PIF WRITE MAP FLTINT () -*

*

*— PRJSPFTS -|- PRJS STORE -|- MAP SYM -|- MAP SYM CAVG -
MAP STATS -*

* | |- MAP SYM RAVG - |-
MAP SYM GRID

* | |- COPY R4 |-
MAP STATS -*

* | |- MAP STATS -
MAPSSTATS !

*

* - MAP POLAR -|- MAP CLEAR !

* | - MAP$POLAR - MAP POLAR GRID !

*

* - PMAP _FFT - FOURT - L6TO9 !

*

* - PFTS_STORE - PIF WRITE MAP FLTINT () -*

*

*- FREEMEM - FREE !

*

#

|- PIF WRITE MAP FLTINT () - differentEndian () !

