
EM3DR.DOC
(last update August 24, 2004)

CONTENTS
A. INTRODUCTION
B. PROGRAM INPUT
C. PROGRAM EXECUTION
D. EXAMPLE EM3DR BATCH JOB
E. PROGRAM NOTES
F. NOTES ON USE OF EM3DR FOR ICOSAHEDRAL PARTICLES
G. PROGRAM NOTES FOR SYSTEM MANAGER
H. CREDITS
I. FINAL NOTES
J. FLOW CHART FOR EM3DR PROGRAM

A. INTRODUCTION
EM3DR is a non-parallelized three-dimensional (3D) image recon-

struction program. It produces a 3D map from a set of particle
images. The program first extracts the data for normal equations
from each particle view, then combines the normal matrices and
solves them to give big G's, which are temporarily or permanently
stored in a disk file (DEFAULT = BG.DAT), then computes little g's
from the big G's, and finally computes a Fourier Bessel
transformation of the little g's to produce the 3D density map of a
particle with defined symmetry (typically icosahedral, but several
cyclic and dihedral symmetries are also now supported) in the
"standard" 2-fold setting (see EMICO_SYS at web site: http://
bilbo.bio.purdue.edu/~baker/programs/programs.html)). Since Janu-
ary 1998, 3D map data have been stored in the Purdue *.PIF format.

EM3DR is normally run after and in combination with EMPFT or
EMICOGRAD.

In *THEORY*, EM3DR has no restrictions as to number of particles
combined or the resolution limit. Of course, the memory capacity
of the computer and disk space available WILL pose ultimate limits
if you go overboard.
Latest changes (Jun 2002): Option for different CTF correction
filters.

B. PROGRAM INPUT

Em3dr now require a keyword organized input. The input is
designed as follows:

keyword = value

where the "keyword" field denotes the data attribute you would like
to set and the "value" field the value to which you would like to
set it. For example to set the BIN_FACTOR you would like to use in
em3dr to "2" you would enter the following line:

BIN_FACTOR = 2

Normally one would place all the keyword input in an input file and
then pipe that into the program all at one time. For example, if
your input file is named "input.dat" you might run as follows:

% em3dr < input.dat > em3dr.log &

with em3dr.log containing all of the program output during the run.

The END_OF_KEYS keyword signals the program to stop gathering
keyword input and continue by first gathering parameter filenames.

NOTE: The minimum required input to identify the keyword
is indicated in CAPITAL LETTERS. For example, the keyword
"VERbose" will be recognized if only "VER" appears in
the input stream. All other characters are then superfluous.

 Input parameters control the operation of EM3DR as follows:

 THRee3dr_mode
 = 0 Entire program is run to compute a 3D map from images

 = 1 Stop after calculating BG'S (stored in BG.DAT)
 = 2 Start with existing BG.DAT data and compute 3DR

 SYMmetry = 1 if no symmetry
 2-31 if n-fold about z-axis
 532 if icosahedral
 The following dihedral point group symmetries are allowed:

222,32,422,52,622,72,822,92

 BIN_factor
 = 1 Binfactor of 1 (DEFAULT; i.e. no data compression)

 = 2 Binfactor of 2 (compresses 3D data eightfold and 2D
 data fourfold) The current limit on BIN is 2.

 NOTE: BIN=2 is mainly designed to be used in conjunction with
 EMPFT when it is used with BIN=2. When BIN is set = 2,

 then IMG_MP_SCALEF defaults to 0.5, regardless of any
other

 value you may enter for IMG_MP_SCALEF.

 VERbose
 = 0 gives minimal output to terminal or *.LOG file

 = 1 gives extra output
 = 2 generates lots of output!!!

 BG_Out = 1 BG data saved in binary file 'BG.DAT'

 LG_Out = 1 LG data saved in binary file 'LG.DAT'

 MP_Out = 0 - output whole 3D map in standard 2-fold view
 = 1 - use only odd set of images to compute MAP
 = 2 - use only even set of images to compute MAP
 = 3 – output both even and odd maps
 = 5 - output quadrant along 5-fold view

When MP_Out = 1 or = 2 then only EVERY OTHER image in the total
input set of images is used for the calculation of the 3D MAP.
Note that “odd” or “even” does NOT mean that images are selected
according to particle ID, but instead just means that the particle
images are selected according to the SEQUENCE in which they are
read from the PARAM file(s). For example, if your FIRST PARAM
file only lists particles with even-numbered IDs (e.g. 22, 34, 36,
58, 100, 268, 982, 1046, etc.) and MP_Out is set = 1, then only the
images with ID #s 22, 36, 100, 982, etc. will be used. Also, if in
this last example, the PARAM file was instead the 2nd PARAM file
listed in the EM3DR batch job AND the first PARAM file specified an
ODD number of images, then only images with ID #s 34, 58, 268,
1046, etc. would be selected from this PARAM file. This strategy
assures that, no matter how many PARAM files there are and no
matter what the particle IDs are, the number of images selected
will always be equal to or within one of being half of the total
number of images listed in the PARAM files.

When MP_Out = 5, only a top (near) quadrant of the 3D density
map in the five-fold view is computed and stored in a disk file.
Choosing this option may be very useful for producing preliminary
maps where you just need a quick look at a partial map to see if it
is correct.

Future enhancements to EM3DR may include options to write out
even smaller portions of the standard 3D map (e.g. just a quadrant)
which will generate greater disk storage savings and perhaps
enhancements in other routines.

2. RESOLUTION_HI, RESOLUTION_OUT, UNITS_OUT, MAP_Pizsiz, MAP_DIM,
ICO_SPREAD

 (2F,I,F,I,F)

RESOLUTION_Hi specifies the highest possible resolution to which
the final 3D map can be computed. RES_HI (and RES_OUT) are
expressed in units defined by the user (see description of UNITS,
below). RES_HI can't be set to a value any SMALLER than twice the
size of the IMAGE pixels (the so-called Nyquist limit imposed
because the Fourier transform of digitized data only extends to a
spatial frequency of 1.0/(2*pixel size). If you believe your IMAGE
data are good enough to achieve higher resolution, you need to
rescan the IMAGE at smaller pixel resolution. The typical rule of
thumb is to digitize your IMAGE data at a pixel resolution that is
3 or 4 times the expected resolution, in which case only
information in the Fourier transform out to a radius (IRAD) of
FFT_DIM/3 or FFT_DIM/4 is used. If, for example, you expect your
IMAGE RESOLUTION to be about 2.0 nm, then you would normally
digitize at 0.7 nm intervals (or smaller).
NOTE: The program prints a warning and then STOPS if you attempt to

enter a value for RES_HI that is too small (i.e. too high a
resolution).

RESOLUTION_Out is the resolution to which the final 3D map is
computed. RES_OUT must be equal or larger than RES_HI. Normally
RES_OUT is set equal to RES_HI (the DEFAULT), but sometimes it is
useful to calculate several reconstructed density maps at different
resolutions. This can be done efficiently by calculating and saving
the BG data (MODE = 1) with RES_HI set to the maximum resolution
desired and then running EM3DR (MODE = 2) to reuse the already
calculated BG data, but setting RES_OUT to different values (larger
than RES_HI) for each new map you calculate.

UNIts_out specifies the units assigned to the variables RES_HI
and RES_OUT and also to the PIXSIZ variable obtained from each of
the PARAM files (see description of PARAM files below: input line
#7). The user may define UNITS according to the following table,
but REMEMBER - make sure you are CONSISTENT and use the same UNITS
to specify ALL these variables.

0 = pixels (i.e. dimensionless)
1 = Angstroms (A)
2 = nanometers (nm)

MAP_Pixsiz is the size of pixels in the final 3D map and also
(if MAP_dim is left = 0) will automatically resize the dimensions
of the 3D map. Only positive floating point numbers are valid for
MAP_Pixsiz. Using negative values for MAP_Pixsiz results in
MAP_Pixsiz being set to 0.0. The DEFAULT (0.0) will make a 3D map
with pixels identical to the LARGEST pixelsize in the input IMAGE
data (called PIXSIZ_MAX) and the map will have NCOL**3, dimensions,

where NCOL is the LARGEST linear dimension of the input IMAGE data.
Set MAP_Pixsiz smaller than PIXSIZ_MAX if you wish to produce a
larger than normal reconstruction, one that is sampled with smaller
size MAP pixels to achieve much nicer 3D rendering effects for
making high quality figures for slides or publication. For
example, if MAP_Pixsiz = PIXSIZ_MAX/2.0, the final 3D map will have
dimensions (2*NCOL+1). Under these conditions EM3DR will take
considerably longer than normal to finish and may 'consume' very
large amounts of disk space to store the finely sampled output map.
Typical, final reconstructions used to generate nice surface-shaded
renderings (e.g. with ROBEM) are computed with MAP_Pixsiz =
PIXSIZ_MAX/2.0. If you wish to get a map quickly and don't mind
coarse MAP pixel resolution, set MAP_Pixsiz > PIXSIZ_MAX and the 3D
map will be correspondingly smaller and take up much less disk
space (and be rendered much faster, etc.).
NOTES: if BIN=2, then MAP_Pixsiz is set EXACTLY EQUAL to

2.0*PIXSIZ_MAX because BIN=2 is treated as a special case
for use of the 3D MAP in EMPFT.

It may be best to use RobEM to render MAPs with smaller size
pixels rather than creating MAPs with EM3DR and smaller
pixels because this saves disk space and I/O overhead in
programs.

MAP_Dim can be used to specifically fix the dimensions of the 3D
map and thereby override the effects of any change in map
dimensions brought about by using MAP_Pixsiz. Though not likely to
be used too often, MAP_DIM adds flexibility to how you create
output 3D map data. Setting this parameter can be useful, for
example if you are trying to produce a 3D model of the right
dimensions for use in EMPFT, which currently requires that the NCOL
and NROW dimensions of the 3D model EXACTLY match the NCOL and NROW
dimensions of the input IMAGE data. MAP_DIM may also be used to
keep the dimensions of the 3D output map constant, while at the
same time allowing the pixel size of the 3D map data to be
magnified or demagnified according to the value of Map_pixsiz. For
example, you may choose to calculate a 3D map with, say Map_pixsiz
= PIXSIZ_MAX/0.75, but with MAP_DIM set equal to the size the 3D
map WOULD have been IF MAG_Pixsiz were left = 0.0. This would give
a 3D map in which the reconstructed particle would appear shrunk by
25% but still inside a 3D box of dimensions equal to the dimensions
of the original input IMAGE data.
WARNING: If you decide to use MAP_DIM, beware of possible "side
effects". For example if you set it too small depending on what
MAP_Pixsiz is set to, the map may be cut off beyond a radius that
lies within the particle! Sooooooooo, unless you really need to
use this option, leave MAG_DIM = 0 and let the program size the 3D
output map according to the value of MAP_Pixsiz and the input IMAGE
dimensions.

ICO_SPREAD is a seldom used variable that sets the condition on
the mean inverse eigenvalue. This is usually (99.99% of the time)
set equal to 1.0 (The DEFAULT). Set to a lower value for a less
stringent test.

3. CTF_Mode, CTF_Filter_mode, TEMperature_factor, FILter_factor_1
(2I,11F)

These parameters are used to affect CTF corrections of the
images. The following is a simple description of the nature of the
use of these variables. More information will be supplied as we
become more adept at using CTF corrections with real data.

CTF_Mode is a switch that signifies the type of CTF correction
to make.

CTFMode Action taken
------- --
 0 No CTF correction made to the FFT data.
 1 Full CTF correction (flip phases and modify amplitudes)
 2 Only flip phases in the FFTs
 3 Only modify amplitudes in the FFTs
 4 Multiply image by CTF (WARNING) blah blah

FILTER options and formulas

TEMperature_factor is a variable that specifies an estimate of
the temperature factor for the IMAGE data. Values in the range of
200 to 500 Angstroms square are typical, however, it is recommended
that you NOT enter a value for TEMperature_factor until you are
near the end of refining your 3D density map. Hence,
TEMPERATURE_FACTOR should normally be set = 0.0. TSB needs to add
more detailed description (and formula???)

FILT_FAC is the FACTOR TO MAKE SURE NOISE IS NOT MAGNIFIED TOO MUCH NEAR THE
NODES OF THE CTF. THE FORMULA USED depends on the value of CTF_FILTER_MODE:

 CTF_FILTER_MODE FORMULA
 --

1 CTF_FILTER_MODE 4 (before first peak)+ CTF_FILTER_MODE 2 (after
first peak)
FFTnew = (FFTold*TEMPERATURE_FACTOR)/(ABS(CTF) +
FILTER_FACTOR_1*(1-ABS(CTF)) (Before first peak)
FFTnew = (FFTold*ABS(CTF)*TEMPERATURE_FACTOR)/(CTF**2 +
FILTER_FACTOR_2*(1-ABS(CTF)) (After first peak)

2 FFTnew = (FFTold*ABS(CTF)*TEMPERATURE_FACTOR)/(CTF**2 +
FILTER_FACTOR_1*(1-ABS(CTF))

 3 FFTnew = (FFTold*ABS(CTF)*TEMPERATURE_FACTOR)/(CTF**2 +
FILTER_FACTOR_1)
 4 FFTnew = (FFTold*TEMPERATURE_FACTOR)/(ABS(CTF) +
FILTER_FACTOR_1*(1-ABS(CTF))
 5 FFTnew = (FFTold*TEMPERATURE_FACTOR)/(ABS(CTF) + FILTER_FACTOR_1)

 FILTer_factor_1 and FILTer_factor_2 are typically set to 0.1
(DEFAULT). Use values less than 0.1 at your OWN RISK. Values
greater than 1.0 are also not recommended and are reset on input to
default values!

4. BG_Filename - File containing BG data (A; DEFAULT = BG.DAT)

Enter the name of the permanent file in which the big G data are
stored (MODE=2). This input line is read but ignored if MODE.LE.1.

5. MAP_Filename - 3D MAP output filename (A; DEFAULT = ICOS2F.PIF)

Specify the name of the PIF format file to store the 3D map.
This input line is read but ignored if MODE=1.

6. TITLE - Header for 3D MAP (80A1)

The header is text you can use to identify the 3D map data.
This input line is read but ignored if MODE=1.

7. Input PARAMETER filename(s) (A FORMAT)

Enter the names of up to 999 different PARAM files, each one on
a new input line. A full description of the contents of PARAM
files is given in the documentation for the program EMPFT (see web
site: http://bilbo.bio.purdue.edu/~baker/programs/programs.html).
The first line of each PARAM file should list the name of the IMAGE
file which contains byte-packed raw image data stored in *.PIF
format. The second line in each PARAM file contains the values of:

PIXSIZ, UNITS, VOLTAGE, AMPFAC, DELF_MAJ, DELF_MIN, ANG_MAJ, and
CS_COEFF. The remaining lines in each PARAM file contain the
current set of ID, THETA, PHI, OMEGA, X, Y, MAG_FAC, PFTCC, PRJCC,
and CMPCC values for specific particles in the raw image file.
Values for PFTCC, PRJCC, and CMPCC if present, are ignored by
EM3DR. MAG_FAC defaults to 1.0 if no value or a 0.0 is supplied.

ID is the image number--the storage position of the IMAGE data
for byte-packed format data.

THETA,PHI,OMEGA are the current values of the three orientation
angles (in degrees) for each particle image (obtained from previous
runs of EMPFT or EMICOGRAD or EMICOFV).

FFT_ORIGX,FFT_ORIGY are the pixel coordinates of the particle
center (the point 0.0,0.0 corresponding to the lower left corner of
the boxed particle image). These values are estimated or refined
by EMPFT.

MAG_FAC is a radial scale factor computed in the EMPFT program.
It specifies the size of each particle image relative to some
standard, such as a 3D reconstruction model. Hence, a MAG_FAC =
1.02 means that the particle image is 2% larger than the model.
EM3DR uses this value to assure that all particle transforms are
sampled so the data are all combined at a uniform magnification.
With images of frozen-hydrated particles boxed from a single
micrograph, MAG_FAC = 1.0 (DEFAULT) is normally assumed for all
particles.

NOTE: Input line 7 and following are ignored if MODE=2.

C. PROGRAM EXECUTION

Normal operation of EM3DR leads to a 3D that map contains the
entire reconstructed particle viewed down a 2-fold axis in the
standard orientation: for a particle with icosahedral (532)
symmetry, this is where three mutually perpendicular two-fold
particle axes are aligned with a Cartesian (XYZ) map coordinate
system (NCOL columns in the X direction; NROW rows in the Y
direction; NSEC sections in the Z direction). For particles with
other symmetry, such as with Cn (cyclic) or Dn (dihedral) point
group symmetry, the n-fold axis coincides with the Z-axis.

NOTE: On Linux this program is generally run in BATCH mode. The
following is an example Linux batch run command file.

D. EXAMPLE EM3DR BATCH JOB

Create a file like this (Let's call it "em3dr.bch" for this
example):

! COMMAND FILE FOR RUNNING EM3DR
!
! THE INPUT ARE AS FOLLOWS:
!
! 1. MODE, SYM, BIN, IPRINT, BG_OUT, LG_OUT, MP_OUT (7I)
! MODE = 0: run entire program
! = 1: stop after calculating bg's
! = 2: start with existing BG.DAT data
! SYM = 1 if no symmetry (like a ribosome)
! = 2-31 if n-fold cyclic symmetry (about z-axis)
! = 532 if icosahedral symmetry
! = 222 if 222 dihedral symmetry
! = 32 if 32 dihedral symmetry
! = 422 if 422 dihedral symmetry
! = 52 if 52 dihedral symmetry
! = 622 if 622 dihedral symmetry
! = 72 if 72 dihedral symmetry
! = 822 if 822 dihedral symmetry
! = 92 if 92 dihedral symmetry
! BIN = 1: no data compression (DEFAULT)
! = 2: compresses 3D data eightfold and 2D data
! fourfold). The current limit on BIN is 2.
! IPRINT = 1: extra output to terminal or *.LOG file
! = 2: even more output to terminal or *.LOG file
! BG_OUT = 1: BG.DAT saved (otherwise not saved)
! LG_OUT = 1: LG.DAT saved (otherwise not saved)
! MP_OUT = 0: output whole 3D map in standard 2F view
! = 1: use only odd-order images to compute MAP
! = 2: use only even-order images to compute MAP
! = 5: output top quadrant in 5-fold view
!
! 2. RES_HI, RES_OUT, UNITS, IMG_MP_SCALEF, MAP_DIM, ICO_SPREAD
! (2F,I,F,I,F)
! 3. CTFMODE, CTF_FILTER_MODE, TEMPERATURE_FACTOR, FILT_FAC(10)
(2I,11F)
! 4. BG data input/output filename (A) (ignored if MODE = 0)
! 5. 3D map output filename (A; DEFAULT = ICOS2F.MAP)
! 6. Header for 3D map (80A1)
! 7. Parameter filename(s) (A)
!
1, 532, 1, 0, 0, 0, 0
35., 35., 1, 1.0, 0, 1.0
0, 1, 0.0, 0.1, 0.1
HSV_BG.DAT
HSV.PIFMAP
Equine herpes intermediates #1856 n=60 3DR 99**3 (35A resolution)
HSV.DAT

Now change your default directory to the appropriate:
% cd ~tsb/v/hsv/test

Run the program and generate log file "em3dr.log":
% em3dr < em3dr.bch > em3dr.log &

E. PROGRAM NOTES

Several parameters are listed at the terminal (or in the *.LOG
file):

BOX_DIAM = Original particle diameter (in densitometer pixels). This
also equals 2.0 times the reciprocal of the annuli spacing
in the MATBG routine (=2.0/FFT_STEPSIZE).

FFT_STEP_MIN = minimum width of each transform annulus, in
transform pixel units (TPU), given by:

FFT_DIM
 ------------- TPU

BOX_DIAM*2.0

MAX_BESSEL_ORDER = The highest Bessel order used in the computa-
tion of the layerplane data as computed by:

(NBES-1)*Z_SYM

LG_NANNULI = Cut-off radius (in ANNULI) in transform space.
Usually equals MAX_NANNULI (set in MATBG part of
program), but may be made smaller to reduce
resolution. LG_NANNULI is computed as:

(FLOAT(FFT_DIM))
 NINT (--------------------)

(FFT_STEP_MIN*PIX_RES)

NANN_BG_MAX = Largest number of annuli needed from a transform, as
calculated by:

(FLOAT(FFT_DIM))
 NINT (--------------------)

(FFT_STEP_MIN*PIX_RES)

The default for NANN_MAX_BG is FFT_DIM/4.0.

NBES = The number of Bessel orders needed to achieve a resolution
at LG_NANNULI in the Fourier transform, as given by:

(PI*LG_NANNULI*BIGR_STEP*FLOAT(BOX_DIAM))
 1 + NINT (---------------------------------------)

(FLOAT(Z_SYM))

NCOL = Dimension of 3D MAP (# of pixels/row). Also equal to NROW
(# of pixels/column) and NSEC (# sections in the MAP).

PIX_RES = Pixel resolution with units specified by UNITS parameter.
This is the smallest possible pixel resolution as
computed by:

RES_OUT

PIXSIZ_MAX

PIXSIZ_MAX = Maximum size pixel of the input images as specified in
the PARAM file(s).

RADIUS = Number of radial steps (pixels) in real-space for the
reconstruction. The particle diameter = (2*RADIUS + 1).

RES_HI = Maximum resolution (in UNITS) for calculations of the big
G’s, as specified by the user.

RES_OUT = Reconstruction resolution (in UNITS) as specified by the
user. Must be ≥ RES_HI because the reconstruc-tion can’t
be computed at a resolution any higher than the
calculation of the big G’s.

STEP_SIZE = Size of each radial step (i.e size of each pixel in the
reconstruction relative to the original pixel size in
the digitized particle image).

1.0

IMG_MP_SCALEF

F. NOTES ON USE OF EM3DR FOR ICOSAHEDRAL PARTICLES
For ICOSAHEDRAL particles, EM3DR first computes one half of

the density map, oriented with a five-fold axis coincident with the
Z axis and one, perpendicular 2-fold axis coincident with the Y
direction, from the little g's. Little g's are only computed for
Bessel orders that are multiples of 5. The density map is
calculated a section at a time in unique 2π/5 (= 72°) sectors.
Each sector is subdivided in cylindrical coordinates (RHO(r,φ))

since the little g's are computed in polar form. The polar section
is interpolated to produce a Cartesian section (MAP(x,y)).

After all sections are computed (the number of them =
RADIUS+1), the half-particle 3D map is rotated so that the old Y
direction (2-fold) becomes the new Z direction and a 3D map of the
entire particle is temporarily stored. The map in this orientation
has two other mutually perpendicular 2-fold axes in the XY plane of
the central section, but not coincident with the X and Y
directions. A final transformation rotates the particle into the
"standard" orientation so the three mutually perpendicular 2-fold
axes coincide with the X, Y, and Z directions
(ROWS,COLUMNS,SECTIONS) of the 3D map.

The program produces a 3D map with full 532 symmetry.

G. CREDITS
The original code (some still mostly intact!) for performing

the Fourier Bessel reconstruction of icosahedral particles was
written by R. Crowther and L. Amos (MRC Laboratory, Cambridge,
England). Many modifications have been made since then (includes
contributions from EMBL lab in Heidelberg and NIH lab in Bethesda)
and the list of references that follow provide more details about
the procedures:
Crowther, R. A., L. A. Amos, J. T. Finch, D. J. DeRosier and A.
Klug (1970) Three dimensional reconstructions of spherical
viruses by Fourier synthesis from electron micrographs. Nature
226:421-425.

Crowther, R. A. (1971) Procedures for three-dimensional
reconstruction of spherical viruses by Fourier synthesis from
electron micrographs. Phil. Trans. R. Soc. Lond. 261:221-230.

Fuller, S. D. (1987) The T=4 envelope of sindbis virus is organized
by interactions with a complementary T=3 capsid. Cell 48:923-934.

Baker, T. S., J. Drak and M. Bina (1989) The capsid of small
papova viruses contains 72 pentameric capsomeres: direct evidence
from cryo-electron-microscopy of simian virus 40. Biophys. J.
55:243-253.

Fuller, S. D., S. J. Butcher, R.H.Cheng and T. S. Baker (1996)
Three-dimensional reconstruction of icosahedral particles - the
uncommon line. J. Struct. Biol. 116:48-55.

Baker, T. S., N. H. Olson, and S. D. Fuller (1999) Adding the third
dimension to virus life cycles: Three-Dimensional reconstruction
of icosahedral viruses from cryo-electron micrographs. Microbiol.
Molec. Biol. Reviews 63:862-922.

H. FINAL NOTES

1. Use EMPRJ to project the 3D map in any view orientation as
specified in an unedited or edited (to 'fix' orientations as
desired) PARAM file.

2. EMPFTPRJ can be used to compute a uniform set of views within
the asymmetric unit of the 3D map.

I. FLOW CHART FOR EM3DR PROGRAM

** means “see below”; # means end of program; ! signifies no subroutine calls

* MAIN *
* (EM3DR.FOR) *

 *
 *- PIRADDEG !
 * |- PIF_OPEN !
 * |- PIF_READ_GH - differentEndian !
 * |- PFILE_INFO -|- PIF_READ_DH -|- differentEndian !
 *- INFO -----| |- PIF_CLOSE ! |- convertBackFloat !
 * |
 * |- FFT_SET_DIM_DEF_SAME !
 *
 *- GETMEM1 - MALLOC !
 *
 *- GETPARAMS !
 *
 *- SCREEN_DUMP1 !
 *
 * |- PIF_OPEN !
 * |- PIF_READ_GH - differentEndian !
 * |- PIF_READ_DH --------------------|- differentEndian !
 * |- PIF_CLOSE ! |- convertBackFloat !
 * |- PIF_READ_BOXI4 -|- differentEndian !
 * | |- convertBackFloat !
 * |- PIF_READ_IMGI1 - PIF_READ_BYTESHORT_IMAGE !
 * |
 * |- IMG_R4_FFT -|- IMG_R4_FFT_FILL - FFT_CLEAR !
 * | |- FFT_2D - FOURT - L6TOL9 !
 *- FFTS -|
 * |- IMG_FFT -|- IMG_FFT_FILL - FFT_CLEAR !
 * | |- FFT_2D - FOURT - L6TOL9 !
 * |
 * |- CTF_DIVIDE – CTF_ASTIG !
 * |- FFT_TO_ATBT2 - PIRADDEG !
 * |- ATBT_STORE !
 * |- FREE !
 *
 *- GETMEM2 - MALLOC !
 *
 * |- NORMALS !
 * |- ZEROZ !
 * |- EMMEET*
 * |- EM4RMI_532 !
 *- MATBG -|- EM4RMI !
 * |- INTRP !
 * |- BGSOLVE ------|- CGESV (Math library routine)
 * |- BGOUT ! |- CGEEV (Math library routine)
 *
 *
 *
 *
 *

 *
 * |- NORMALS !
 * |- ZEROZ !
 * |- EMMEET*
 * |- EM4RMI_532 !
 *- MATBG2 -|- EM4RMI !
 * |- INTRP !
 * |- NMAT -|- NMATA ! |- ICO_LOCATE !
 * | |- FREE ! |- ICO_TRIDI !
 * |- BGSOLVE2 -|- ICO_HOW ------|- ICO_EIGVAL !
 * | |- ICO_BGPROD ! |- ICO_EIGVEC !
 * |- BGOUT2 ! |- ICO_RELOCT !
 *
 *- FREEMEM1 - FREE !
 *
 *- GETNRECS !
 *
 *- GETMEM3 - MALLOC !
 *
 *- FILLBES -|- BSL0 !
 * |- BSL1 !
 *
 *- BGS_TO_LGS !
 *
 *- SCREEN_DUMP2 !
 *
 *- GETMEM4 - MALLOC !
 *
 * |- PIF_INIT_HEAD !
 * |- PIF_OPEN !
 *- FB_NFOLD -|- PIF_WRITE_GH - differentEndian !
 * |- PIF_WRITE_DH -|- differentEndian !
 * | |- convertBackFloat !
 * |- PIF_WRITE_SECI2 - PIF_WRITE_MAP_SECTION**
 * |- PIF_CLOSE !
 *
 * |- PIF_INIT_HEAD !
 * |- MRC2F ! |- PIF_OPEN !
 * | |- PIF_WRITE_GH - differentEndian !
 *- MAP532 -|- XYZ2F ---------|- PIF_WRITE_DH -|- differentEndian !
 # | | |- convertBackFloat !
 |- APPLY_3F** |
 |- PIF_WRITE_SECI2 - PIF_WRITE_MAP_SECTION**
 |- PIF_CLOSE !

==
| |- GENROT – DMATMUL !
| |- PIF_READ_WMAPI2 - PIF_READ_MAPI2**
| |- VECMUL !
|- APPLY_3F -------|- GET_EQUIVALENT_VALUES – INTERP3D !
| |- FILL_PERP2 !
| |- PIF_WRITE_SECI2 - PIF_WRITE_MAP_SECTION**
| |- PIF_WRITE_DH -|- differentEndian !
| |- convertBackFloat !
==
|
|- PIF_WRITE_MAP_SECTION - PIF_WRITE_MAP_FLOAT_IMAGE - differentEndian!
|

==
|
|- PIF_READ_MAPI2 - PIF_READ_MAP_SHORT_IMAGE - differentEndian !
|
==

