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I I I .D. FOURIER IMAGE PROCESSING TECHNIQUES 
II I .D.1. Optical Diffraction 

Optical diffraction is arguably the simplest Fourier image processing technique, and is often the 
first processing step in studies where the primary data are images recorded on photographic film.  
The main advantage of optical diffraction is that it provides an objective way to assess and reveal 
periodic structural information in images.  Klug and Berger (1964) were the first to use an optical 
bench to examine and record diffraction patterns from electron micrographs and thereby 
objectively analyze structural information in images of biological specimens. 

a. Forming the diffraction pattern 
Optical diffraction patterns are easily produced from selected (masked) regions of micrographs.  

A simple optical bench consists of a laser, which is used to produce a parallel, monochromatic beam 
that illuminates a specific area of the micrograph, and a (diffraction) lens to focus the Fraunhofer 
diffraction pattern in the back focal plane of the lens.  The pattern may be viewed directly, but with 
due caution to avoid focusing the bright, central spot formed from the unscattered rays on the 
retina.  The pattern is also often recorded on a standard photographic emulsion. 

b. Experimental apparatus: the optical diffractometer 
 There are numerous diffractometer designs.  They are generally categorized into one of two basic 

classes depending on whether the optical path is straight (l inear diffractometer: Fig. III.60) or 
bent by use of optically flat mirrors (folded diffractometer: Figs. III.61 and 62).  The type of 
diffractometer one chooses to use depends, in part, on the intended use of the apparatus.  The 
folded design is usually preferred for rapid screening of a large number of micrographs when image 
quality and specimen preservation need to be assessed in order to select images for subsequent 
optical (§ III.D.2) or digital (§ III.D.3) filtering operations.  For high quality optical reconstruction 
work (§ III.D.2), the linear design is generally preferred since there are fewer optical components, 
and thus fewer aberrations. 

Fig. III.60.  Simple, linear, optical diffractometer.  The diagram shows the arrangement of the components used to construct 
a simple optical diffractometer.  A. Laser; B, shutter; C, beam expanding lens; D, pinhole; E, adjustable diaphragm; F3, 
diffraction lens; G, electron micrograph; and H, viewing screen or camera.  (From Horne and Markham, 1972, p.336) 

Fig. III.61.  Schematic diagram of an optical diffractometer.  (From Thompson, 1972, p.48) 
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A diffractometer of reasonable quality, suitable for simple experiments such as screening images 
or detecting and locating periodicities, can be built or purchased for a few thousand dollars or less.  
More expensive designs ($10,000 or more) are usually easier to use and align, and produce high 
quality diffraction patterns and reconstruction images.  A high quality diffractometer usually 
includes an image reconstruction system (with a high-quality, corrected, doublet lens), a pinhole 
spatial filtering system to remove noise in the illumination beam, a moderate-to-high power laser (1-
50 mWatt), high-quality, high-reflectance mirrors (if the optical path is folded), fully adjustable, 
precision holders for all components, and an image and diffraction pattern recording system. 

Many laboratories prefer to construct their own diffractometer with specifications dictated by the 
intended use of the instrument.  For example, if most of the image reconstruction work is to be 
performed on a computer, a simple and inexpensive linear diffractometer for surveying images will 
suffice.  The use of liquid gates, in which micrographs are submerged in oil to iron out in 
homogeneities in the micrograph emulsion (and glass or gelatin backing), produce diffraction 
patterns in which Friedel symmetry is nearly perfectly preserved (Table 1.I.C.2.e, Baker, 1981).  
However, such extreme measures prove to be inconvenient in practice and, in any event, present 
day digital processing systems are both fast and reliable and are usually preferred over high-quality 
optical processing systems. 

Details of the design, operation, components, alignment, and calibration of optical diffractometers 
can be found in several references (Horne and Markham, 1972; Mulvey, 1973; Johansen, 1975; 
Erickson, et al., 1978; Baker, 1981).  The optical diffractometer, much like the electron microscope, 
needs to be carefully aligned and calibrated to perform optimally. 

c. Applications of optical diffraction 
Optical diffraction provides useful information about the geometrical arrangement of subunits in 

the specimen.  Such structural detail often cannot be discerned by simple, visual inspection of the 
original micrograph.  For example, the presence of rotational screw axes or pseudo-symmetries may 
go undetected without the information provided by the optical diffraction pattern.  These types of 
structural information are determined by correctly indexing the pattern, that is, defining a lattice 
(or lattices for multilayered or helical particles) that accurately defines the location of all diffraction 
spots. 

Indexing is an essential step for correct application of optical or digital filtering, or for many 3D 
reconstruction techniques (§ III.D.2).  Except for some helical and multilayered particles, the 

Fig. III.62.  Diagram of the folded optical diffractometer, built at UCLA in 1972. 
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indexing of OD patterns from most planar specimens is quite straightforward.  Articles by Finch, 
Klug and Nermut (1967), Moody (1967), Kiselev and Klug (1969), DeRosier and Klug (1972), Lake 
(1972), Leonard, Kleindschmidt and Lake (1973), and Unwin and Taddei (1977) give excellent 
examples of how pattern indexing is performed (these and additional examples are cited in Table 
1.I.D.8, Baker, 1981).  Misell's book (1978; pp.106-122) devotes an entire section to theoretical 
and practical problems of indexing.  Artifacts in optical diffraction patterns sometimes make 
indexing difficult (Table 1.I.E, Baker, 1981).  The characteristic, prominent "cross" observed in 
many optical diffraction patterns is mainly a consequence of strong diffraction caused by the edges 
of the mask used to select a region of interest in the micrograph.  This feature is regarded as 
"noise" in the pattern and thus, should not influence the selection of a consistent indexing scheme.  
A typical example of an optical diffraction pattern recorded from an image of a negatively stained 
2D crystal of catalase is shown in Fig. III.63. 

Several applications of optical diffraction include: 
- Accurate measurement of lattice parameters (unit cell dimensions) (Fig. III.63) 
- Detection of rotational and translational symmetry elements (Fig. III.63) 
- Determine relative orientation of multilayered specimens (e.g. stacked 2D sheets or opposite 

sides of two-sided structures) 
 -Detect and measure specimen preservation (distortions, overall resolution, radiation damage) 

for selecting best images for further image analysis 
- Assess short/long range order in periodic specimens (Fig. III.64) 
- Identification of signal vs. noise in images (Fig. III.63) 
- Ability to examine specific small areas (Figs. III.63, 65-67) 
- Determine electron optical conditions, i.e. contrast transfer function (focus, drift, astigmatism, 

etc.) at time micrograph was recorded (Figs. III.63, 65-67) 
- Determine the hand of 3D structures (from metal-shadowed or tilted specimens) 
- Superb device for teaching principles of diffraction, symmetry, and Fourier transforms 

Optical diffraction techniques have been successfully employed in fields outside electron 
microscopy, for example, in the study of small-molecule crystal structures.  In fact, pioneers of X-

ray crystallography were responsible for much of the original development of diffractometers.  W. L. 
Bragg (1939) designed the first optical diffractometer, calling it a "new type of X-ray microscope".  
Several crystallographers used optical diffraction methods as an aid in solving small molecule crystal 
structures.  By comparing diffraction patterns produced by models of the crystal structure (using 
various size holes punched in sheets of metal at predicted positions to represent atoms) with the 
experimentally recorded X-ray diffraction patterns, it was often possible to rule out incorrect 
structures and thereby verify or solve a crystal structure. 

Fig. III.63.  (Left) Low magnification micrograph of negatively stained bovine liver catalase.  (Right) High magnification view 
of small portion of same crystal.  (Right) Optical diffraction pattern recorded from the area outlined in the low magnification 
image.  
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Fig. III.65.  Focus series of thin carbon film. The black dots are gold atoms added to assist in focusing.  The optical diffraction 
patterns above each image indicate (a) optimum defocus, (b) 150-nm under focus, (c) 210-nm under focus, (d) 250-nm 
under focus.  Image bar = 10nm.  Diffraction bar = 3.0 nm-1.  (From Misell, 1978, p.60) 

Fig. III.64.  The effect of lattice disorder on the diffraction pattern.  (a) Ordered lattice. (b) Vertical disorder of ±10%. (c) 
Two-dimensional disorder of ±10%. (d) Two-dimensional disorder of ±25%.  (From Misell, 1978, p.72) 
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Fig. III.66.  Micrographs and optical transforms of a carbon film, showing the effect of axial astigmatism and the 
determination of its direction.  (From Misell, 1978, p.64) 

Fig. III.67.  Images of a carbon film (top row) and corresponding optical transforms (bottom row), showing different image 
defects: (a) specimen drift, (b) miscentered objective aperture, (c and d) electrical charging of the objective aperture as a 
result of contamination, for example.  (From Misell, 1978, p.65) 
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I I I .D.2. Optical Fi ltering 
Klug and DeRosier (1966) and Bancroft, Hills and Markham (1967) independently introduced the 

use of optical filtering.  This technique is mainly suitable for the study of periodic specimens with 
translational symmetry.  Optical filtering provides a relatively straightforward way to remove the 
contributions from noise in micrographs and thereby reveal clearer images of specimen structure.  
In addition, it is a powerful method for separating Moiré images of multilayered specimens.  Other 
applications are outlined Table 1.II.B of Baker (1981).  Optical filtering is rarely (if ever) practiced 
these days and has been replaced by computer-based processing methods because they offer a 
number of significant advantages over optical processing (§ III.D.3).  Nonetheless, a basic 
understanding of the method provides an excellent foundation for learning the principles that 
underlie Fourier-based image processing. 

The review by Erickson, Voter, and Leonard (1978) and articles by Klug and DeRosier (1966) and 
Fraser and Millward (1970) give excellent introductions to the theory and practice of optical 
filtration.  The basic principle of the technique is straightforward, but the method can easily lead to 
erroneous results especially for inexperienced researchers. 

a. Indexing the diffraction pattern 
The first, and most important step in an optical filtering experiment is to correctly index the 

optical diffraction pattern obtained from the specimen image.  A pattern is considered successfully 
indexed if it is possible to distinguish between spots arising from noise (aperiodic image details) and 
those attributed to the periodic nature of the specimen.  Although it is unnecessary to attempt to 
identify all the noise components in the unprocessed image, a correct filtration experiment requires 
knowledge of how noise and signal components are distinguished.  For most crystalline specimens, 
the diffraction pattern is a lattice of bright spots (Bragg reflections) against a weaker background 
of noise (Figs. III.63, 68-69).  Noise, or aperiodicity in the image, produces diffraction data of widely 
varying intensities in all parts of the pattern.  Note that “periodic noise”, i.e. noise located at or 
close to the lattice points of the diffraction pattern, CANNOT be removed by filtering.  
Systematic specimen flattening or staining artifacts are examples of situations that produce 
periodic-type noise.  Other major sources of noise are listed in § III.B. 

If the diffraction pattern proves to be difficult to index, an incorrect lattice may have been 
identified (e.g. because a super lattice has been missed).  Occasionally, strong, non-indexible spots 
may be attributed to multiple scattering (Table 1.I.D.7, Baker, 1981) or they might arise from 
strong, aperiodic features in the specimen.  The temptation may be to ignore images with non-
indexible patterns, but difficulties with indexing often clearly indicate that important structural 
information has been overlooked.  Novices of image processing will benefit from studying the 
indexing examples presented in Misell's book (1978; pp.106-122) and cited in Table 1.I.D.8 of 
Baker (1981).  Some aspects of the indexing of OD patterns are illustrated in Figs. III.69-72. 

b. Fi ltering procedure 
Once a set of diffraction spots is found to be consistent with a given lattice, a filter mask is 

designed with holes positioned to allow unobstructed passage of the diffraction spots at the lattice 
points (or lattice lines for helical particles).  The mask is accurately positioned in the diffraction 
plane of the optical diffractometer so all spots at the lattice points are allowed through (Fig. III.73).  
Most of the aperiodic noise in the diffraction pattern, arising from non-periodic image features, is 
blocked out by opaque regions of the mask.  A reconstruction lens, placed behind the mask, is used 
to refocus the unobstructed rays and forms a filtered image. If the mask is removed, an unfi ltered 
image is formed.  Optical reconstruction illustrates the Abbe double-diffraction phenomena of image 
formation (§ III.C.6.d): the diffraction pattern of the micrograph is formed in the first stage 
(forward transformation), and, in the second stage the reconstruction lens acts to rediffract the 
diffracted rays (back- or reverse transformation) to form an image (filtered or unfiltered).  Thus, a 
filtered (or unfiltered) image is the result of rediffraction of the masked (or unmasked) diffraction 
pattern of the object (micrograph). 
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Fig. III.68.  Electron micrographs and optical diffraction (OD) 
patterns of four different kinds of T-even bacteriophage polyheads.  
All specimens were negatively stained with 2% NaPT.  (a) Coarse 
polyhead.  (b) A-type polyhead.  (c) B-type polyhead.  (d) C-type 
polyhead.  Differences in the OD patterns reflect differences (that 
can't be seen by naked eye) in the 'crystal' lattice structures.  
(From Steven et al., 1976, p.192) 

Fig. III.69.  Optical diffraction of a portion of a plane 
layer of phosphorylase b particles and optical filtering 
of the image.  (a) OD pattern (right hand part is 
indexed on the reciprocal lattice).  (b) Portion of a 2D 
crystal before filtering experiment (stain here is white 
and protein is black).  The particle in the circle is 
missing.  (c) Filtered image.  The missing particle 
shows up as a result of the averaging action of 
filtering.  The unit cell shown on the image 
corresponds to the reciprocal lattice of (a).  (From 
Kiselev et al., 1971, Plate III) 

Fig. III.70.  (a) Optical transform obtained from (b) micrograph of negatively stained bacteriophage T4 polyhead (coarse). (c) 
One-sided optical reconstruction of the polyhead lattice.  Scale bar in filtered image = 20 nm.  Scale bar in OD pattern = 
0.2nm-1.  (From Misell, 1978, p.116) 
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Fig. III.73.  Optical filtrations of the four major classes of T4 
polyhead as shown in Fig. III.68.  Upper left: coarse polyhead.  
Upper right: A-type polyhead.  Lower left: B-type polyhead.  
Lower right: C-type polyhead.  (From Steven et al., 1976, 
p.200) 

Fig. III.71.  Reciprocal lattice for the coarse 
polyhead shown in Fig. III.70.  The first order of 
the hexagonal lattice is missing.  Note also that 
these schematic representations of the OD 
pattern (a) and one side of the reciprocal lattice 
(b) are rotated 90 degrees with respect to the 
OD pattern depicted in Fig. III.70.  (a) Original 
OD pattern with spots from one-side ringed.  
(b) Reciprocal lattice drawn through the spots 
resulting from one-sided diffraction (arrowed).  
(h,k) define the diffraction order; a* and b* are 
the reciprocal lattice constants.  a* = b* for a 
hexagonal lattice.  (From Misell, 1978, p.116).  

Fig. III.72.  A capsomer with 6-fold symmetry convolved 
over a hexagonal lattice generates a diffraction pattern in 
which the Fourier transform of the capsomer is sampled 
on a hexagonal reciprocal lattice.  The 6-fold symmetry of 
the capsomer is reflected in its Fourier transform in that, 
in the absence of noise, each diffraction spot is related to 
five other hexagonally conjugate spots.  These sextets of 
equivalent spots lie on concentric circles that, in order of 
increasing radius, we refer to as 1st, 2nd, 3rd, etc. 
orders, as shown in the schematic drawing.  The radii of 
these circles bear fixed ratios to one another 
(R1:R2:R3:R4 etc. = 1:√3:2:√7 etc.).  In practice, 
sources of electron micrograph noise, as well as 
departures from exact symmetry, comprise the 
equivalence of hexagonally conjugate spots, but 
indexation of the diffraction pattern is possible provided 
at least two orders are visible.  (From Steven et al., 1976, 
p.194)  
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c. Fi ltering apparatus (Figs. III.74-76) 
Filtration experiments are performed on an optical diffractometer equipped with a reconstruction 

lens (or lenses).  The reconstruction system must be of high optical quality to minimize image 
distortions (e.g. phase errors due to spherical aberration).  Camera lenses often make suitable 
reconstruction lenses, although they are usually expensive and not ideally designed for the purposes 
of the optical reconstruction experiment (camera lenses are generally designed for optimum 
transmission of light, not for flatness of field).  A high quality, but inexpensive, corrected doublet, 
with a large usable aperture, can produce quality, reconstruction images. 

Usually a folded diffractometer (e.g. Fig. III.62) is employed both for survey and reconstruction 
work, mainly because it is more convenient to operate compared with a linear-type apparatus.  The 
main disadvantage of the folded design is that mirrors are required to bend the optical light path.  
Mirrors add extra optical surfaces, which collect dust or become scratched and thus can deteriorate 
the quality of the diffraction pattern or reconstruction image.  Expensive, high-quality (high 
reflectance and optically flat) mirrors are recommended for optimum results.  The quality of the 
optical bench is easily assessed by critically comparing an unfiltered reconstruction with the original 
image.  The closer the match, the better the reconstruction system. 

Fig. III.74.  Optical filtering.  (a) Recording of diffraction pattern.  (b) Recording of the filtered image.  Note that the paths of 
the dashed rays are inaccurate, because, for example, in (a) the ray that passes nearly through the center of the lens should 
bend only slightly (according to thin lens action, rays passing through the center of a thin lens will continue on a straight line.  
See § I.A.4).  (From Slayter, 1970, p. 448) 
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 d. Design of fi lter masks 
Once a consistent indexing scheme is established, the design and fabrication of the filter mask 

(Table 1.II.E, Baker, 1981) usually constitute the rate limiting steps in a filtration experiment.  
Chemical etching procedures are used to produce precise masks: but, more tedious and demanding 
manufacturing skills are required compared to those for preparing masks by punching or drilling 
holes.  Erickson, Voter and Leonard (1978) describe a simple method for producing suitable masks 
within minutes.  Their method has the additional advantage of using the original, recorded pattern 
as a template. 

e. Image averaging 
Optical filtering reduces image noise by averaging neighboring, periodically repeated units in the 

array.  As the size of holes in the filter mask is reduced, more noise in the diffraction pattern is 
removed and the extent of local averaging increases (Figs. III.77-79).  That is, the image of a given 
unit in the array is averaged with more of its neighbors.  If holes are made smaller than the 
diffraction spots, the signal-to-noise ratio may actually decrease (Table 1.II.F.1.d, Baker, 1981). 

f. Artifacts of optical f i ltering 
Filtered reconstructions often contain undetected, erroneous details as a result of several types 

of artifacts.  Three obvious sources include 1) pattern mis-indexing resulting in incorrect mask 
design, 2) incorrect positioning of the mask in the diffraction plane causing spots to be partially or 
totally blocked, and 3) mis-positioned or mis-shaped mask holes making it impossible to pass all 
spots through the mask simultaneously.  More subtle sources of artifact are indicated in Table 1.II.F 
of Baker (1981).  Some authors contend that ALL reconstructions are, at least to some extent, 
erroneous (Berger et al., 1972; Horne and Markham, 1972; Haydon and Scales, 1973; Taylor and 
Ranniko, 1974). 

Fig. III.76.  Schematic diagram of an optical diffractometer used to form a reconstructed image, I.  C and S are the 
collimating and diffraction lenses, respectively, and O is the reconstruction lens.  (From Blundell and Johnson, 1976, p.110) 

Fig. III.75.  An optical system typically used to diffract and filter electron micrographs.  (From Lake, 1972, p. 63) 
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Fig. III.77.  (a) Electron 
micrograph of AB-type T4 
polyheads, negatively stained 
with 2% NaPT.  (b) OD pattern 
of the marked region of the 
polyhead.  (c) Indexation of 
the reciprocal lattice of the 
diffraction pattern generated 
by one side of the flattened 
polyhead bilayer.  Visible 
diffraction spots are shown 
with solid circles, invisible 
ones with empty circles.  For 
orientation, the dominant 
spots of the 4th radial order 
are shown with larger full 
circles.  The other diffraction 
spots can be obtained from 
the Indexation by reflection of 
the given lattice through the 
meridian (vertical axis).  (d) 
Optical filtration of this 
polyhead.  (From Steven et 
al., 1976, p.205) 

Fig. III.78.  Optical filtering demonstration, Part 1.  (a) 40 by 
40 array of nearly 'perfect' circular holes, representing an 
idealized model of a crystal structure.  A magnified portion 
appears directly above the complete array.  The diffracting 
object is a copper foil with holes etched in it.  (b) The OD 
pattern of (a).  Note that the transform exists only at discrete 
lattice points (reciprocal lattice) except for the subsidiary 
maxima, which are shown more clearly in the enlarged view 
(c).  Because (a) is the convolution of a circular hole with a 
40 by 40 lattice of points, (b) is the transform of a single 
hole (Airy function) multiplied (or sampled) by a lattice, which 
is the reciprocal of the lattice of (a).  (c) Enlarged central 
region of (b) showing the subsidiary maxima between lattice 
points.  The subsidiary maxima contain information about the 
overall shape of the diffracting object. If n is the number of 
repeating units in a given direction, then the number of 
subsidiary maxima along the same direction in the transform is 
n-2.  Thus, by counting the number (38 in this example) of 
maxima between two lattice points in (c), the number of 
repeating units (40) can be determined without seeing the 
object.  (d) 50 by 50 array of imperfectly shaped holes 
representing a distorted crystal structure.  The magnified 
region (above) also shows an extra hole, which does not 
belong to the rest of the lattice.  (e) Optical transform of (d).  
A large portion of the diffracted light falls between the lattice 
points, indicating the presence of aperiodic information in the 
object (d).  (f) Enlarged central region of (e). 
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Fig. III.79.  Optical filtering demonstration, Part 2.  (a,e,i) Filtering masks (insets) and their transforms.  The masks are 
identical 11 by 11 arrays except for the size of the holes.  da*/a* = 0.43, 0.20, and 0.10 for the masks represented in (a), 
(e), and (i).  The masks are designed to filter the central 11 by 11 array of the transform shown in FIg. III.78e.  All three 
mask transforms have the same lattice parameters (which must be identical with the object lattice), but they are multiplied 
by the transform of the different size holes in each case.  As the mask hole gets smaller, the area of the central maximum of 
the hole transform (Airy function) increases.  The mask transform is the function that the object (Fig. III.78d) is convoluted 
with.  Thus, the size of the central maximum is the area of local averaging in the filtered reconstructions (d,h,l).  (b,f,j) 
Enlarged views of (a), (e), and (i), respectively.  The number of lattice points contained in the central maximum is 
approximately the number of times each repeating unit of the object gets superimposed in the filtered reconstruction image.  
The numbers in these examples are approximately (b) 17, (f) 79, and (j) 314.  (c,g,k)  Same as Fig. III.78f with masks of (a), 
(e), and (i) positioned in the transform plane of the optical diffractometer.  This shows what information is allowed to pass 
the transform plane of the diffractometer and recombine in the reconstruction plane.  (Note: only the central 3 by 3 portion 
of the 11 by 11 array is shown here).  (d,h,l) Filtered, reconstruction images of Fig. III.78d.  The insets are from the identical 
region shown in the magnified portion of Fig. III.78d.  Notice how the original 50 by 50 array of Fig. III.78d becomes larger in 
the filtered images. 
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Fig. III.80.  Optical filtering demonstration, Part 3: Very 'distorted' structure.  (a) 50 by 50 array of an "imperfect" crystal 
with some very large defects.  (b) Enlarged portion of (a).  (c,e,g) Filtered images of (a) obtained using the masks of Fig. 
III.79 a,e,i respectively.  (d,f,h) Enlarged views of (c), (e), and (g) from the same region as (b).  Notice that the holes in the 
filter mask must be sufficiently small (da*/a* = 0.1) before the noise resulting from the major defects is averaged out.  This 
also demonstrates how a periodicity can be forced on a structure by the action of the mask in Fourier space. 
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g. Comparison with translational photographic-superposition method 
The translational, photographic-superposition method (also called linear integration: 

Markham et al., 1964) produces analogous but not identical results with those of optical filtering 
(Figs. III.82-83).  The translational parameters (lattice repeat and geometry) are best determined 
by optical diffraction, not by subjective, trial and error methods (Table 1.IV.B.1.a, Baker, 1981).  
Despite procedural differences, optical and digital filtering methods produce remarkably similar 
results (Aebi, et al., 1973; Misell, 1978; Fig. III.84).  Even though structural details may be reliably 
represented by either method, digital processing offers considerable advantages (discussed in § 
III.D.3). 

 

Fig. III.81.  Optical filtering of double-layer crystal.  (a) Image of negatively stained T-layer from Bacillus brevis. (b) Enlarged 
view of area A, consisting of about 10 x 10 unit cells.  (c) Optical reconstruction of upper layer of area A.  Bar in (b,c) = 
200Å.  (From Misell, 1978, p.163 adapted from Aebi et al., 1973) 
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Fig. III.83.  Electron micrographs showing repetitive features subjected to integration with the aid of the apparatus shown in 
Fig. III.82.  The lattice spacings in Pt phthalocyanine crystals serve as a good illustration for the application of this technique 
to provide image reinforcement and accurate measurement.  The series of photographs shows the original image (a) after 
integration at periodicities of b = 1.116, c = 1.142, d = 1.168, e = 1.194, f = 1.220, g = 1.246, and h = 1.272 nm 
respectively.  (From Horne and Markham, 1972, p.422) 

Fig. III.82.  The basic arrangement of the linear integrator.  (From Horne and Markham, 1972, p.421) 
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Fig. III.84.  Optical filtering demonstration, Part 4.  (a) Optical transform of a circular area of (b).  (b) Low magnification 
image of a negatively stained catalase crystal.  The parallelogram shaped area was processed in the filtering experiments (f) 
and (i).  The shape of the window was chosen to minimize diffraction effects on the reconstruction images.  (c) Enlarged 
portion of (b) from the region used for reconstruction.  (d) Drawing of mask used for 1D filtering of (b). Magnification is 
same as in (a).  (e) Central portion of the diffraction pattern of (d).  (f) Filtered image of (c) obtained with the mask in (d).  
(g) Drawing of mask used for 2D filtering of (b).  Magnification is the same as in (a) and (d).  (h) Central portion of the 
diffraction pattern of (g).  (i) Filtered image of (c) obtained with the mask in (g). 
 
Image (f) is obtained by convoluting (c) with the 1D lattice in (e).  The intensity of each lattice point in (e) and (b) is equal 
to the square of the superposition weight at that point.  This is because the recorded diffraction pattern is the square of the 
object transform, since, in (e) and (h) the phase information is lost and only the intensity at each lattice point is recorded.  
(d)-(f) are an example of an optical analog of the Markham linear superposition method.  Notice in (f) that the repeat units 
are averaged in the horizontal but not vertical direction.  The extent of averaging is equal to the number of points (15) in 
the central maximum of the mask transform shown in (e).  The number is actually smaller than this because at least half of 
the superpositions have weights too small to be noticed in the reconstruction (f). 
 
The second filtered image (i) is obtained by convoluting (c) with (h).  In (i), therefore, the repeat units are averaged with 
horizontal as well as vertical neighbors.  (f) and (i) are similar except that (f) still contains vertical components of random or 
aperiodic noise. 
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h. Symbolic mathematical description of optical f i ltering 
The concepts of convolution and sampling (§ III.C.6.g) provide a fundamental basis for 

understanding the principles of optical reconstruction.  Image averaging is simply obtained by 
convoluting the unfiltered image (i) with the Fourier transform of the filter mask (T(M) = m).  
Assuming M is correctly made and positioned in the diffraction plane of the optical diffractometer, 
then m will cause i to be convoluted with a lattice whose geometry exactly matches that of the 
crystalline lattice of the specimen imaged.  In the following expressions, capital letters are used to 
designate functions in transform (reciprocal) space, whereas lower case letters denote object (real) 
space functions. 
 

IMAGE SPACE TRANSFORMATION SPACE RECONSTRUCTION SPACE 
image T(image)xMASK image*T-1(MASK) 

i IxM i*m 

where I x M = I x [L*H] x W 
 i*m = i*[l x h]*w 
 M = [LATTICE*HOLE] x WINDOW 
 m = [lattice x hole]*window 

DEFINITIONS: 
x = multiplication operation. 

* = convolution operation. 
T = forward Fourier transform operation. 
T-1 = inverse Fourier transform operation. 
i = unfiltered, original micrograph (image). 
I = T(i), the forward Fourier transform of i. 
M = filter MASK (a physical entity in an optical filtering experiment). 
m = T-1(M), the inverse Fourier transform of MASK. 
L = LATTICE which "exactly" fits the reciprocal lattice of the crystalline object (i). 

Recall that "LATTICE" is infinite in extent. 
l = T-1(L), the inverse Fourier transform of LATTICE.  This lattice "exactly" matches the real 

space crystal lattice if LATTICE is chosen correctly. 
H = HOLE in the filtering MASK (usually circular ~20-50 µm diameter). 
h = T-1(H), the inverse Fourier transform of HOLE.  If HOLE is circular, h is an Airy function, that 

is, the Fourier transform of a HOLE which is mathematically defined as J1(X)/X (where 
J1(X) is a first order Bessel function). 

W = WINDOW or boundary which limits the overall extent of the MASK. 
w = T-1(W), the inverse Fourier transform of WINDOW.  If the boundary of the HOLES in MASK is 

square or rectangular, w is a sin(X)/X function (a sharp "spike").  If WINDOW is circular, w 
is a J1(X)/X, but note that w is a much sharper function than h because W is larger than H 
(Law of Reciprocity). 

IxM = filtered diffraction pattern. 
i*m = filtered image, or the original image convoluted with the Fourier transform of MASK. 
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I I I .D.3. Digital Fourier Analysis of Electron Micrographs 
Processing images by digital rather than optical Fourier methods offers several advantages.  The 

main advantages are that digital methods are quantitative and adaptable.  In addition, 
procedures such as 3D reconstruction and rotational filtering are either impractical or essentially 
impossible to achieve with optical techniques.  It is also not practical to carry out quantitative 
analysis and data manipulation on an optical bench.  For example, image aberrations such as 
astigmatism and defocusing, or specimen distortions such as crystal lattice imperfections or 
curvature in filamentous specimens can be corrected more easily with digital procedures (Table 
1.III.B.6, Baker, 1981).  Diffraction amplitudes and phases can be measured and modified, for 
example, to correct for contrast transfer effects (see Table 1.III.C.3.g, Baker, 1981).  Another 
advantage of digital processing is that separate image reconstructions can be averaged together 
and a measure of their agreement can be quantified (Table 1.III.B.3.b,c, Baker, 1981).  Digital 
processing offers virtually infinite flexibility in data manipulation.  For example, in "pseudo-optical 
filtering", the digital equivalent of optical filtering, filter masks with an infinite variety and 
combination of hole sizes, shapes, and "transparencies" can be designed with suitable software. 

Computer image processing has replaced the requirement for high-quality, expensive optical 
systems.  Nevertheless, there are certain disadvantages such as the necessity for discrete 
sampling of the data.  This produces aliasing artifacts (transform overlap) that can be reduced, 
although never totally eliminated, by judicious choice of scanning conditions.  DeRosier and Moore 
(1970) define and discuss the aliasing problem inherent to digital image processing. 

The initial effort to set up a functioning digital system can be significant and one should be 
genuinely committed to image processing studies to warrant such effort.  It is fruitless to develop a 
digital system just to view specimen diffraction patterns.  An optical diffractometer is both 
inexpensive and operates at the speed of light!  Optical diffraction is an excellent way to assess the 
quality of images since it is fast and inexpensive compared to digital methods, though digital 
methods continue to get faster and cheaper.  Aebi, et al. (1973), Misell (1978) and the table below 
compare the advantages and disadvantages of optical and computer Fourier processing methods.  
Additional applications and selected examples of digital processing are outlined in Table 1.III.B of 
Baker (1981). 

a. Comparison of optical and computer image analysis 
Despite the obvious differences, optical and digital Fourier processing of electron micrographs are 

similar in many ways.  The advantages and disadvantages of each of these procedures is 
summarized in the following table: 
OPTICAL COMPUTER 
Original micrograph used Micrograph digitized and "floated" 
Bench required for diffraction can be simple and 
inexpensive 

Requires fast computer to achieve “interactive” 
results 

Formation of diffraction pattern instantaneous Careful digitization is normally slow (> 10 min.) and 
computation of diffraction patterns may take several 
seconds or longer 

Filtering operations require high quality (i.e. 
expensive) optics 

Computers get more powerful and cheaper every day 

Accurate filter masks tedious to make Only limited by quality of software 
Filtered image recorded photographically Reconstructed images displayed and photographed 

using computer graphics devices 
Quantitative information difficult or nearly impossible 
to obtain 

Essence of computing IS to be quantitative 

Amplitudes and phases difficult to manipulate Infinite control over amplitudes and phases 
Attenuation of zero-order beam to improve contrast 
in filtered image (may cause frequency doubling) 

Control of contrast simple and straightforward 
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OPTICAL COMPUTER 
Imposing idealized, non-translational symmetries 
virtually impossible 

Any symmetries (even incorrect ones!) can be easily 
imposed 

Correction for lattice distortion virtually impossible Lattice distortions can be corrected (e.g. 
reinterpolate original image onto perfect lattice) 

Data (diffraction patterns and filtered images) are 
continuous (i.e. vary smoothly) 

Data are discrete (pixels) 

Fast for screening and selecting best images for 
additional analysis 

Not yet, at least until CCD technology gets real cheap 

Reconstruction of 3D structure essentially impossible Procedures rather straightforward with "right" 
software 

Impractical to average data from different 
micrographs 

Easy to average data from different micrographs 

b. Digital processing steps 
A typical digital processing procedure includes the following steps: 

- Image selection 
- Densitometry 
- Boxing and floating 
- Fourier transformation 
- Indexing 2D lattices (for objects with translational symmetry) 
- 2D filtering/ 3D reconstruction 

Image selection 
After an initial screening by eye (to discard obviously bad images), micrographs are examined by 

optical diffraction to select a subset of the "best" images in terms of both optical quality and 
specimen preservation.  This selected subset of images is then examined by digital processing 
methods.  An optical diffraction pattern quickly reveals the electron optical conditions present when 
the micrograph was recorded (defocus level, astigmatism, drift, vibration, etc.).  Note that optical 
diffraction is generally an unsuitable method for selecting images of individual particles with well-
preserved symmetry, which might for example be suitable for digital, rotational filtering procedures 
(§ III.D.4.b).  For this type specimen, the rotational power spectrum is computed from the digitized 
image and analyzed (§ III.D.4.b). 

Densitometry 
If the micrograph was captured on a CCD camera, no further digitization of the image is necessary 

and it is available for immediate boxing and floating as described in the next section.  Micrographs 
recorded on film are digitized on a scanning densitometer, a device that converts optical 
densities on the photographic emulsion to a digital image (a numerical array corresponding to the 
optical densities at discrete positions in the image).  Several types of densitometers are available 
for digitizing TEM images.  The most precise (hence, most expensive) are the flatbed type devices 
(e.g. Figs. III.85-86), which are used to digitize the micrograph while it lays flat.  In older, rotating-
drum densitometers, the micrograph is fixed to a cylindrical surface (drum) and the micrograph is 
scanned while it is translated along and rotated about the drum axis. 
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The density value at each point in the digitized image is represented as a pixel with intensity 
ranging between 0 and 255 (an eight-bit number) or 4096 (12-bit number) or even higher in some 
CCD cameras.  The information contained in a single 1024 by 1024 digital image (1,048,576 
pixels), which is quite small by today’s standards, is quite staggering: it is roughly equivalent to 
slightly more than the entire contents of the lecture notes (text only) for this course.  Note that, 
at a raster step size of 7 µm (smallest step size on the Zeiss flat-bed densitometer shown in Fig. 
III.86), the area of the micrograph digitized for a 1024 by 1024 array would be ~50 mm2 or only 
0.625% (1/160th) of the entire area of a typical 8 x 10 cm micrograph.  The amount of 
‘information’ contained in a single TEM micrograph is impressive if not mind-boggling. 

Images are scanned at raster settings corresponding to dimensions that are one-third or less of 
the expected resolution in the image to minimize aliasing artifacts (Table 1.III.C.2.c, Baker, 1981; 
Figs. III.87-88).  The equivalent step size or pixel resolution in the specimen image depends on the 
magnification of the micrograph that is scanned.  For example, if the micrograph was recorded at a 
magnification of 45,000X and scanned at 14 µm intervals, then each pixel corresponds to 0.311 nm 
at the specimen.  The maximum resolution one could reasonably expect to recover from such a 
digitized image is thus about 0.933 nm (= 3 x 0.311).  This of course assumes the specimen is 
preserved to at least this resolution and the electron optical conditions allow recovery of this level 
of detail.  The table below lists the pixel size at the specimen (in nm) for images at recorded at 
different nominal magnifications and scanned at four different step sizes such as those available, for 
example, on the Zeiss microdensitometer (Fig. III.86).  Using the above rule of thumb, the maximum 

Fig. III.86.  The Zeiss Photoscan densitometer is generally used to 
scan images at a pixel step size of 7 µm.  (From Scripps Research 
Institute CIMBio web site) 

Fig. III.85.  Schematic view of the principal parts of a 
flatbed microdensitometer.  (From Arndt et al., 1969, 
p.386) 

Fig. III.87.  Scanned image of negatively stained bacteriophage T4, sampled at different step-sizes.  Left to Right: 200, 100, 
50, 25, 12, and 6 dpi (dots per inch). 



CHEM 165,265/BIMM 162/BGGN 262 3D ELECTRON MICROSCOPY OF MACROMOLECULES 

 

262  

resolution recoverable for any size pixel will be about three times larger than the corresponding 
pixel size. 
 

Pixel Size at Specimen (nm) 
FEI CM300 

MICROGRAPH 
ZEISS PHODIS 

SCAN STEP SIZE (µm) 
MAGNIFICATION 7 14 28 56 

13,500 0.519 1.037 2.074 4.148 
19,500 0.359 0.718 1.436 2.872 
24,000 0.292 0.583 1.167 2.333 
33,000 0.212 0.424 0.848 1.697 
45,000 0.156 0.311 0.622 1.244 
61,000 0.115 0.230 0.459 0.918 

Microdensitometers are computer-controlled devices.  They measure optical densities in the 
micrograph on a square grid (i.e. at equal-spaced intervals in x and y directions: Fig. III.85).  The 
change in intensity of a small beam of light after it passes through the micrograph is measured 
using a photomultiplier, which converts the analog signal (beam of light) to a digital signal (intensity 
value typically between 0 and 255).  The digitized data can be displayed directly on a computer 
graphics screen or stored on various media (e.g. disk drive or CD or DVD) for archival purposes and 
subsequent manipulations.  As mentioned above, digitized images often contain significantly large 
amounts of data (pixels), and they can quickly fill up the storage capacity of disk drives on 
computers.  Several years ago, before the days of high capacity storage technology, large (2400'), 
1600 bpi (bits per inch), 9-track magnetic tapes were used for data storage and each tape only 
held about 25 1024 by 1024 images (each pixel stored as a 16 bit value).  Today’s students are 
too young to remember the double-sided, single-density floppy diskette once used in personal 
computers that could only store 360 Kbytes (here one byte = 16 bits), which was barely sufficient 
to store one measly 512 by 512 image.  If an entire micrograph is scanned at a 7 µm step size, 
there will be roughly 10,000 by 14,000 pixels.  If each pixel is represented as a 4-byte, floating 
point number, the scanned micrograph will consume more than one-half Gigabyte (Gb) of storage 
capacity (10,000 x 14,000 x 4 = 560 Megabytes).  Hence, only one entire micrograph scanned in 
this manner could fit onto a single 650 MB CD.  More and more image reconstruction labs now use 
database storage technology to help manage the bookkeeping, retrieval, and processing of these 
large amounts of digitized image data.  

Fig. III.88.  Effect of sampling interval on 
recovery of information.  In this example, an 
arbitrary function has been sampled at 4, 8, 16, 
32, 64, or 128 intervals.  A sampling interval of 
32 appears to be just fine enough to recover 
the shape of the 1D function without loss of 
information.  At coarser sampling intervals (4-
16), the subtler features in the data are lost.  In 
practice, one aims to digitize the data at a fine 
enough interval to be certain that no 
information is lost.  Thus, using the three-times 
pixel resolution criteria, in this example one 
ought to sample the data 96 (= 3 x 32) or more 
times to be certain to recover all the 
information contained in the data. 
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Boxing and floating the digital image 
The entire digital image or selected (boxed or windowed) areas may be used for subsequent 

processing steps.  If only a portion of the scanned image is needed, the area of interest is boxed in 
a manner similar to that used to mask micrographs for optical diffraction and filtering experiments.  
Thus, areas outside the biological specimen (e.g. carbon film or neighboring specimens, etc.) can be 
selectively removed since these areas mainly contribute noise to the image.  Boxing is conveniently 
performed directly with the digital image displayed on a computer graphics monitor. 

Regions of the digital image outside the area of interest are zeroed (equivalent to masking out an 
area of the micrograph for optical diffraction) and the numerical image is "floated" by subtracting 
the average image intensity around the perimeter of the boxed area from ALL image intensities 
within the masked area.  Floating suppresses intense diffraction spots generated by edges of the 
masked area.  The characteristic "cross" observed in optical diffraction patterns is caused by the 
strong diffraction that occurs at the edges of the square or rectangular mask where the contrast is 
much higher compared to that within the windowed portion of the micrograph.  As you encounter 
pictures of diffraction patterns in the literature, make note of the presence or absence of the 
strong diffraction peaks near the center of the pattern.  The presence of a strong spike or other 
diffraction at the center of the transform indicates that the pattern was most likely generated 
optically.  Alternatively, if the pattern was generated on a computer and still shows strong 
diffraction spikes or other such effects, this would signify that the image was not floated properly 
before Fourier transformation.  

Fourier transformation 
Fourier transformation of the numerical array is usually computed by means of Fast-Fourier 

methods (Table 1.III.C.3.c, Baker, 1981).  In many software packages, the boxed image is 'padded' 
to produce a larger image with pixel dimensions equal to some power of two (e.g. 642, 1282, 2562, 
64x512, etc.).  Thus, if the original boxed image was a 55 by 450 pixel array, then this image would 
be padded AT LEAST out to a 64 by 512 array and then Fourier transformed.  Padding just adds 
pixels with zero intensity to the columns and rows of the boxed image array to make it meet the 
power of two criteria.  This is NOT an essential criteria but it can lead to faster computation of the 
Fourier transform because some fast-Fourier transform (FFT) computer algorithms are more 
efficient with images sized this way. 

The Fourier transform of an n by m image results in an n by m array of complex numbers.  Each 
complex number represents one structure factor (§ III.C.6.f).  Each structure factor is stored in 
computer memory either as a structure factor amplitude and phase or as the real (A-part) and 
imaginary (B-part) parts of the Structure Factor (§ III.C.6.f).  Diffraction amplitudes and phases may 

Fig. III.89.  Diagrammatic representation of sampling a 
2D image on a square lattice.  Upper left shows the 
sampling if it could be performed at discrete points.  
Lower left shows the usual situation in which the 
diameter of the illuminating light beam exactly matches 
the sampling interval.  In the upper right panel, the 
illuminating beam is larger than the raster step, which 
leads to smearing of information because the intensity 
of the image in neighboring regions gets averaged in 
with the intensity of the area adjacent to each lattice 
point.  The illuminating beam in the lower right panel is 
too small, thus only a small fraction of the area defined 
by the sampling lattice is illuminated about each point.  
The ideal situation would occur if the image could be 
illuminated with a square beam, whose dimensions 
exactly matched the sampling lattice.  This is not 
accomplished in practice. 
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be displayed in a variety of ways, but typically on a computer graphics screen. 
Indexing of two-dimensional lattices 

As has already been emphasized, successful application of image analysis and processing 
procedures requires correct indexing of diffraction patterns.  For well-ordered, 2D crystalline 
biological specimens, the diffraction pattern is dominated by a series of discrete spots (Bragg 
reflections) that lie on a reciprocal lattice.  Such patterns are usually fairly easy to index (i.e. define 
the reciprocal lattice parameters and assign Miller indices to each of the spots).  Recall that indexing 
is often already accomplished as a consequence of having inspected an optical diffraction pattern of 
the specimen image.  The indexing of multilayered or two-sided structures (e.g. biological 
aggregates with helical symmetry) can be quite tricky, so care must be used before proceeding to 
the next step (filtration and reconstruction). 

2D Filtering / 3D Reconstruction (Back-transformation) 
Correct indexing of a diffraction pattern is tantamount to deciding which regions of the Fourier 

transform are attributed to 'noise' and which regions are attributed to 'signal'.  Once the decision is 
made as to what is signal and what is noise, the computed Fourier transform is 'masked' in a 
manner completely analogous to the process used to mask the diffraction pattern on an optical 
bench (§ III.D.2).  Thus, the amplitudes in the computed Fourier transform are zeroed everywhere 
except at the reciprocal lattice points.  In pseudo-optical f i ltering, the term "points" actually 
refers to the transform values within a finite region (‘holes’ in the filter mask) centered at the 
mathematical points of an ideal reciprocal lattice: each transform value is left unmodified or may be 
weighted according to its distance from the ideal lattice (a point lying at or very near the ideal 
lattice would by multiplied by 1.0 whereas one near the edge of a mask ‘hole’ would be multiplied 
by a number close to zero).  The modified ("filtered") diffraction pattern is subsequently 
mathematically back-transformed to reconstruct an averaged image.  Complete Fourier 
averaging (all unit cells are averaged together with equal weight) is accomplished by reducing the 
entire transform to a single structure factor amplitude and phase at each of the reciprocal lattice 
points and reconstructing the structure of a single unit cell by Fourier synthesis (§ III.C.6.c). 

There are numerous ways to render and display reconstructed image data.  'Old-timers' (and 
readers of the pioneering image processing literature) will recall the use of character over-printing 
on line printers, contour plotting, cathode ray density plotting, film writing, etc. (see Table 1.IV.B of 
Baker, 1981 for citations of examples).  Modern computer graphics devices provide a variety of 
ways to render 2D or 3D reconstructed data in clear, interpretable form. 

If the 3D structure of a particle is to be reconstructed, structure factor phases and amplitudes 
must be determined in three dimensions to fill in and generate a complete, 3D Fourier transform 
(see Fig. III.59).  This is accomplished for a 2D crystal structure by combining structure factor data 
from several 2D diffraction patterns of independent views of the crystalline specimen.  The extent 
of the 3D transform, and hence ultimate resolution that can be computed, depends both on the 
number and uniqueness of the specimen images that are included in the data set.  Note that, in 
theory, one could add an 'infinite' number of images to achieve 'infinitely' high resolution, but, in 
reality, the actual resolution is limited by many other factors (e.g. radiation damage to the 
specimen, specimen distortions, image drift and astigmatism, defocus level, etc.). 

The rationale for collecting and combining information from distinct views differs depending on 
the nature of specimen (e.g. is it helical, spherical, 2D, 3D, etc.) being studied (§ III.E). 

c. Hardware/Software 
Two obstacles of digital processing are the expense and complexity of the required hardware 

(microdensitometer and computer) and software (programs for carrying out the image processing 
procedures).  Most structural biology (particularly protein crystallography) laboratories are 
equipped with the needed hardware, and often have programs (for example, Fast-Fourier transform, 
film scanning, and computer graphics routines) that can be adapted for most, basic image 
processing tasks.  Microdensitometers can cost well over $100,000 for precision, flatbed 
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instruments (e.g. Fig. III.86).  Most multi-user image processing can be performed quite adequately 
now on computer graphics workstations and even PCs costing a few thousand dollars. 

Several of the laboratories deeply engaged in digital processing studies prefer to tailor their own 
computer software systems since the programs can then be designed to efficiently analyze 
specimens of particular interest to that lab.  In this way, the learning curve is less steep for new lab 
members and results become easier to understand and interpret.  If a highly specialized system is 
not essential, the use of various multipurpose software packages developed by others can be 
downloaded and used.  Three of the more popular program packages currently available include 
SPIDER (Baxter et al., 2007), IMAGIC (van Heel et al., 1996), and EMAN2 (Tang et al., 2007).  Use 
of these packages can save considerable effort not to mention the frustrations of developing and 
testing de novo programs.  The main disadvantage of "black-box" systems is the danger of 
incorrect implementation by untrained or inexperienced users. 

I I I .D.4. 2D Digital Fourier Reconstruction Methods 
Images of biological specimens can be processed in a variety of different ways, some of which are 

more popular or better established than others.  Most processing methods are relatively 
straightforward, but occasionally one will encounter a difficult specimen that may require the use of 
a novel strategy.  In general, the type of specimen examined dictates the type of method applied.   
A convenient classification of specimens can be made according to the shape or symmetry of the 
specimen.   

Though ultimately our interest is in learning the full three-dimensional structure of the molecules 
that we image in the microscope, it can be quite informative to compute image reconstructions by 
Fourier methods in two dimensions, or sometimes even in one dimension (e.g. helices).  Also, a large 
number of biological macromolecules such as membranes, cell walls, and some naturally occurring 
crystals are planar (2D) objects and make excellent subjects for Fourier image processing in 2D or 
3D. 

a. 2D Fourier averaging of specimens with 2D translational symmetry 
Planar objects are considered 2D because one dimension is smaller or much smaller than the other 

two.  For many specimens that fit this description, the shortest dimension is often 50 nm or smaller 
and includes only one or a few unit cells in the direction normal to the plane of the specimen 
(parallel to the electron beam when the specimen is untilted in the electron microscope).  Though 
these type specimens can be analyzed with optical or photographic superposition methods, the 
digital Fourier methods are particularly powerful because they are quantitative and rigorous. 

The methods and applications of 2D Fourier image processing for analyzing images of planar 
specimens can be found in numerous primary literature articles (see Reference Reading List, pp.28-
30, for several examples).  Examples of planar specimens that have been studied by 2D and 3D 
reconstruction techniques are the purple membrane, cytochrome oxidase vesicles, membrane-bound 
ribosomes, actin filament bundles and actin sheets, tubulin sheets, bacterial cell layers, RNA 
polymerase crystals, gap junction membranes, and tropomyosin crystals to name a few. 

The following list briefly outlines the basic steps involved in analyzing in 2D the images of regular 
(i.e. highly ordered or crystalline) planar specimens.  After the basic strategy is outlined, several 
figures are included to help illustrate various aspects of the procedures (Figs. III.90-III.96). 

Protocol for Fourier averaging images of 2D crystals: 
1) After a visual screening step (to toss obvious bad micrographs), select a subset of 

micrographs that give the highest quality optical diffraction patterns.  Highly coherent 
crystalline areas give strong, sharp Bragg reflections to 'high' resolution (e.g. ~15-20Å for 
negatively stained crystals recorded with minimum irradiation techniques or even higher for 
unstained, frozen-hydrated specimens).  Look for minimal radiation damage, astigmatism, and 
specimen drift or vibration and for 'best' defocus (i.e. giving the desired CTF characteristics) 
and highest resolution (most spots in all directions). 
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2) Digitize the micrograph at a sampling interval fine enough not to limit image resolution but not 
too fine or the digitized image will consist of many more pixels than is necessary, which results 
in needless computations.   

3) Box (window) out the desired region of interest, making sure to exclude, if possible, as much of 
the unneeded portions of the digitized image as is practical.  This is easy to do with 'perfect' 
specimens like catalase crystals that grow large enough (several µm2) to fill the entire field of 
view at 30,000 magnification or higher. 

4) Float the boxed image by subtracting from every pixel within the image the average value of 
the pixels that form the perimeter of the box. 

5) Fourier transform the boxed, digitized image.  With some software, the image must first be 
padded with zeroes so the image that is transformed has dimensions that are a power of two 
such as 2562 or 5122 or 256 x 512 or 128 x 1024, etc.  Generally, owing to Friedel's Law, 
just the 'top half' of the Fourier transform need be computed (i.e. k values 0 or positive only).  
The transform is stored as structure factor A (real) and B (imaginary) parts.  Hence, for a 
5122 image, the resulting transform will consist of 512 by 256 complex numbers. 

6) Display and index the diffraction pattern on a graphics workstation.  This indexing could be 
performed on an optical diffraction pattern, however, the digital transform allows one to 
quantitatively check other properties of the specimen such as the presence of certain plane 
group symmetries.  The existence, for example, of a three-fold axis of symmetry at the unit 
cell origin, for noise free data, will restrict the structure factor phases to be multiples of 120°.  
The noisier the image the more the symmetry related structure factor phases will deviate 
from the 120° relationship. 

7) Perform either pseudo-optical filtering or Fourier averaging of the data.  In pseudo-optical 
filtering, filter masks can be computer generated with 'holes' of a specified size distributed on 
a lattice either covering the whole transform or limited at some specified upper resolution 
boundary.  The computer-generated mask is then multiplied times the Fourier transform and 
the result is back-transformed to generate the filtered image.  A number of variations of 
pseudo-optical filtering can be employed.  For example, low and/or high-pass as well as lattice 
filter masks can be generated to perform different types of filtering of the data.  Also, the 
holes can be given a Gaussian weight so the value at the center of the hole is 1.0 but then 
drops to 1/exp at the edge of the hole where the mask has a value of zero.  The Fourier 
filtered image is obtained by back transforming the masked transform. 
To compute a Fourier-averaged reconstruction, in which all unit cells within the boxed area 
are averaged together, the data in the vicinity of each Bragg reflection are averaged or 
integrated together or are sampled to reduce the data to a single structure factor.  This is 
equivalent to the pseudo-filtering experiment in which the hole size is reduced to zero radius, 
which has the effect of convoluting the image with a lattice that includes every unit cell 
contained within the boxed region of the micrograph.  This convolution forces the image to 
obey a perfect translational symmetry (i.e. p1 plane group).  Again, a number of variations of 
this process can be implemented to produce different Fourier averages.  The average 
structure of a single unit cell (all unit cells are identical in a Fourier average) is obtained by 
back transforming the structure factors (Fourier synthesis). 

8. Assess and apply additional symmetry if evidence exists that the specimen obeys symmetry 
higher than p1.  This must be performed with due caution because it is very easy to apply 
any symmetry you want with computer programs.  Hence, when you impose additional 
symmetry, the specimen will, of course, exhibit whatever symmetry has been applied. 
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Fig. III.91.  Fourier average of CCMV at 
increasing resolution limits.  Five contoured 
views of a single CCMV particle from the 
Fourier average shown in Fig. III.90, are 
displayed at progressively higher resolutions, 
from 75Å (top left) to 60 (top right) to 45 
and 30Å (middle panels) to 15Å (bottom 
left).  In each contour display, the darker lines 
outline the stain excluding regions and the 
lighter lines outline the negative stain.  
(Bottom right) A representation of one 
quarter of the CCMV transform, with large 
circles indicting the resolution limits imposed 
to produce the displays in the other panels 
and open and closed small circles indicate the 
phases (0 or 180°, respectively) of each of 
the observed Bragg reflections.  The phases 
obey the relationships required by plane group 
p2121.  Also, note the systematic absences 
along the h and k directions of the diffraction 
pattern. 

Fig. III.90.  Fourier averaging of a negatively stained crystal of cowpea chlorotic mottle virus (CCMV).  (Left) Image of a small 
portion of a CCMV 2D crystal.  (Center) Optical diffraction pattern of small region of CCMV crystal exhibits pseudo tetragonal 
symmetry (p4) with a=b=375Å.  The true unit cell is p2121 as exhibited by the phase relationships in the Bragg reflections 
(see Fig. III.91).  (Right) Grey level display of the Fourier averaged image of the CCMV crystal, with p2121 symmetry imposed.  
The unit cell (white box) contains two virus particles, related to each other by a rotation of ~86°. 
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Fig. III.92.  Fourier averaging of image of negatively stained gap junction membrane.  (a) Low magnification view of entire 
micrograph shows several stained gap junction membranes.  The area outlined with the square black box was digitized and 
displayed on a raster graphics device.  In some regions, two or three junction membranes lie stacked above one another on 
the EM grid.  (b) Display of region boxed and floated from the original micrograph shown in (a).  (c) Computer graphics 
display of the intensities in the Fourier transform of (b), with the transform scaled to reveal the contrast transfer function of 
the microscope.  Note the slight astigmatism revealed in the non-circular noise pattern.  (d) Same as (c) but scaled to show 
just the most intense peaks in the transform.  The h,k=0,2 Bragg reflection is encircled.  (e) Same as (d) with a reciprocal 
lattice overlay.  (f) Structure factor amplitudes (on left) and phases (on right) extracted from the 5122 transform for the 
region centered about the h,k=0,2 reflection circled in (d,e).  Each phase value is divided by 10 (e.g. a phase of 23 at the 
center actually represents a phase of 230°).  A single structure factor amplitude (5598.3) is integrated from within a circle 
like the one depicted, centered at position -0.03 in x and -0.39 in y, with respect to the grid point in the center of each 
window of data points (amp=85, phase=23).  The single structure factor phase (232.3°) is calculated by interpolation from 
the four data points closest to the calculated center of the 0,2 spot.  (g) Fourier average computed by back transformation 
of the set of structure factors extracted as shown in (f). 
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Fig. III.93.  Indexed, optical diffraction pattern 
of Zn tubulin sheets, which were negatively 
stained with uranyl acetate.  This image was 
recorded under minimal dose conditions 
(~20e-/Å2).  The equatorial and meridional 
axes are labeled h and k, respectively.  The 
intensity distribution obeys a near perfect mm 
relationship (i.e. each spot has two mirror-
related mates reflected across the h and k 
mirror lines.  Measurement of the a* and b* 
dimensions in the orthogonal reciprocal lattice 
indicates an orthogonal (rectangular) unit cell 
with a=97Å, b=82Å, and γ=90°.  Systematic 
absences along the h direction reveal the 
presence of a 21 screw axis parallel to the a 
cell direction.  (From Baker and Amos, 1978, 
p.96) 

Fig. III.94.  Image reconstructions of four 
individual Zn tubulin sheets and their average 
(bottom panel).  Dark lines represent 
contours of density from zero to successively 
higher positive amplitudes.  Light lines 
represent contours at negative amplitudes.  
(a-d) Individual reconstructions from four 
images, showing corresponding regions of the 
structure.  Subunits are labeled to indicate 
possible pairing of monomers into 
heterodimers, and to show the relationship of 
dimers in adjacent protofilaments.  The α and 
β labels are arbitrary.   (e) Average 
reconstruction of the four sheets (a) to (d), 
showing contents of several unit cells.  One 
cell is outlined, and the positions of the dyad 
screw axes are indicated by broken lines with 
half arrows.  Note, however, that NONE of 
these reconstructions have had a perfect 
screw axis symmetry enforced.  (From Baker 
and Amos, 1978, p.99) 
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Fig. III.95. Upper right quadrants from optical transforms of unstained purple membrane micrographs recorded by bright-field 
TEM:  (a) Optical transform from low dose image, (b) Optical transform from high dose image.  Diffraction bar = 1/33Å.  
(From Misell, 1978, p.174; adapted from Unwin and Henderson, 1975) 

Fig. III.96.  Contour map of the projected 
structure of purple membrane at 7Å 
resolution.  Thicker lines show positive 
contours; positive peaks arise from higher 
concentrations of scattering material 
(protein) relative to surrounding regions.  Low 
density regions indicated by thinner lines are 
due to lipid and glucose.  Unit cell dimensions 
are 62Å x 62Å.  (From Misell, 1978, p.175; 
adapted from Unwin and Henderson, 1975) 
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b. 2D averaging of objects with point group symmetry: rotational f i ltering 
Specimens that only possess rotational symmetry, such 

as individual oligomeric proteins, spherical viruses, and 
bacteriophage baseplates (Fig. III.97), have been studied 
by several image processing methods.  These include 2D 
rotational photographic-superposition and 2D digital 
rotational filtering, and 3D reconstruction.  In this 
section, only the 2D averaging methods are discussed.  
Digital, rotational filtering and photographic superposition 
techniques produce qualitatively similar results, but the 
photographic methods should be used with caution and 
usually with specimens displaying obvious or well-
established symmetry.  Crowther and Amos (1971) and 
Misell (1978) compare the real-space and Fourier-space 
methods.  

1) Rotational photographic superposition 
method 

Markham et al. (1963) devised a simple, real-space 
method for analyzing images of particles with rotational 
symmetry.  The basic apparatus used consists of a 
photographic enlarger and a movable board to which a 
card is attached that can be rotated about an axis (Fig. 
III.98).  The specimen image is projected onto a 
photographic print attached to the card and a series of n 
images are exposed onto the print, with the print rotated 
by 360°/n after each of n exposures.  For example, if the 
object of interest had 6-fold rotational symmetry, and a 
normal, straight photographic print required a 12 second 
exposure, then a total of six, two-second exposures 
would be required to produce the rotational 
superposition photographic image.  Presumably, 
maximum reinforcement of detail is given when n is the 
true periodicity in the image of the object.  This also 
presumes, of course, that the rotation axis of the print 
can be positioned accurately at the center of symmetry 
in the image.  If they do not coincide, the true symmetry 
of the object may be missed and details will certainly get 
smeared out in the reconstruction.  Thus, the correct 
centering of the photographic print with respect to the 
rotational symmetry axis in the image and the correct 
choice of n are important components in successful 
application of this method.  A mistake in either choice 
leads to erroneous results. 

The main disadvantage of the optical superposition 
method is that it requires a visual assessment step, 
which may be more influenced, by what is eye-catching 
rather than what is correct.  The computational, 
rotational filtering method described in the next section 
provides quantitative information in the form of the 
rotational power spectrum.  The rotational power 
spectrum allows quantitative assessment of the presence 
of a particular rotational symmetry.  Once the symmetry 
is known, a filtered image can be resynthesized from only 

Fig. III.97  A negatively stained preparation of base 
plates from bacteriophage T4.  Rotationally filtered 
images of particles A and B are shown in Fig. 
III.102.  (From Crowther and Amos, 1971, Plate I) 

Fig. III.98.  Apparatus for photographically 
integrating detail in micrographs with radial 
symmetry.  (a) Enlarger unit containing micrograph 
with region to be studied accurately centered in 
relation to the lens.  (b) Movable board containing 
rotary disc.  (c) The center of rotation must be 
carefully aligned to the selected region of the 
micrograph shown at (a).  (From Horne and 
Markham, 1972, p.413) 
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those components that obey the chosen rotational symmetry. 
A second type of apparatus for producing rotationally symmetrized images by the photographic 

superposition method is shown below (Fig. III.99). 

2) 2D digital processing of rotationally symmetric particles- Power spectrum and 
rotational fi ltering analysis 

Conversion from Cartesian to Polar Form 
The digitization, boxing, and floating of the 

specimen image is performed as usual and subsequent 
computations are conveniently performed in polar 
coordinates (r,φ) (Fig. III.100).  Thus, a Cartesian 
image, ρ(x,y), is converted to a polar image, ρ(r,φ), by 
subdividing the Cartesian image into a series of 
equally spaced annuli (Fig. III.101) and interpolating 
the densities within each annulus.  The polar density 
function can be expanded into a series of circular 
waves much as a Cartesian image is conveniently 
expanded into a series of plane waves (Fig. III.101). 

Fig. III.101.  The Fourier method for 
finding rotational symmetry.  The 
image (a) is divided into a series of 
concentric, equal-spaced annuli, of 
which one (b) is expressed as the 
sum of two of its rotational Fourier 
components ((c), the zero-fold and 
(d) the eight-fold symmetric 
component).  The Fourier transforms 
of (c) and (d) are shown in (e) and 
(f), respectively.  (From Moody, 
1990, p.239) 

Fig. III.100. Cartesian (x,y; X,Y) and polar (r,φ; R,Φ) 
coordinate systems in real (left) and reciprocal (right) 
space. 

Fig. III.99.  The arrangement of an 
apparatus for analyzing electron 
micrographs by rotational integration 
with the aid of a strobe illuminator.  
(From Horne and Markham, 1972, p.415) 
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  (1) 

In equation (1), each gn(r) represents the weight of the n-fold azimuthal component of the image 
at a radius r.  The phase term, exp(inφ), positions the peak of each circular wave with respect to an 
origin (usually the x axis) so that all gn(r) are properly summed. 

Rotational Power Spectrum 
Each gn(r) is integrated over the radius of the particle, a, to obtain a measure of the total n-fold 

rotational component of the image.  Power in the image is defined as: 

   (2) 

εn = 2 accounts for the fact that Pn has equal contributions from gn and g-n for n>0. 
The rotational power spectrum is a plot of Pn as a function of n.  This is a compact way to 

represent the rotational symmetry components in the image.  P0 is usually normalized to 1.0 and 
the spectrum is displayed with the Pn on a logarithmic scale (Figs. III.102 and III.103). 

3) Fourier Bessel Transform 
As with other types of specimens, it is convenient with rotationally symmetric specimens to 

perform computations in Fourier space rather than real space.  The polar Fourier transform 
coordinates are R and Φ.  The transform is expanded in the following way: 

  (3) 

 

  (4) 

Jn(X) is a Bessel function of order n.  Each Jn is a circularly symmetric, oscillatory function (Fig. 

Fig. III.102.  (Left) A logarithmic plot of the rotational power 
spectrum of a T4 bacteriophage base plate (particle  A in Fig. III.97), 
showing the strong 6-fold symmetry of the image.  The curve is 
normalized with Po = 1 and the power associated with rotational 
frequencies higher than n = 36 is less than 0.001.  (From Crowther 
and Amos, 1971, Fig.2, p.126).  (Top) 6-fold rotationally 
symmetrized images of negatively stained base plates from 
bacteriophage T4 (particles labeled A and B in Fig. III.97).  The two 
filtered images have rather different appearances because they have 
been plotted at different density levels, but the main features of 
each are very similar.  (From Crowther and Amos, 1971, Plate I) 
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III.104).  The first maximum of Jn(X) for large n (i.e. n > about 5) appears at about X = n+2. 
The transform of a ring of radius a is given by 2πaJ0(2πaR) (Fig. III.105).  Such a ring can be 

considered to be generated from a pair of points, separated by the distance 2a that are rotated 
through the angle π.  A single pair of points at opposite sides of a circle gives rise to cosine fringes.  
When rotationally averaged, the fringes reinforce at the origin but tend to cancel away from the 
origin.  This gives rise to a Bessel function of zero order (J0). 

Fig. III.105.   A ring (left) and its 
transform (right).  (Taken from Crowther 
unpublished course notes, 1973) 

δ(r-a) 2πaJ0(2πaR) 

Fig. III.103. Logarithmic plots of the rotational 
power spectra of two images of discs of tobacco 
mosaic virus protein.  (a) A well-preserved disc 
(Fig. III.109(a)) in which no one component is 
dominant.  In each case the solid curve (-●-) 
refers to a choice of origin that maximizes the 17-
fold component.  In (a) the triangles (▲) refer to 
a choice of origin which simultaneously maximizes 
the 16- and 18-fold components, while in (b) the 
triangles (▲) and squares (■) refer to choices of 
origin which maximize respectively the 16- and 18-
fold components.  The curves are normalized with 
Po = 1 and the power associated with rotational 
frequencies higher than n = 26 is less than 0.001.  
(From Crowther and Amos, 1971, p.127) 

Fig. III.104.  (Left) The behavior of the Bessel function Jn(X) for various values of n.  (From Sherwood, 1976, p. 565).  
(Right) Amplitude variations of the Bessel function Jn(X) for n = 0 to 3.  (From Misell, 1978, p.98) 
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The expansion of the Fourier Transform (equation 4) is analogous to the expansion of the polar 
image densities as given in equation (1).  Thus, the Gn (R) are the coefficients (weights) of each 
azimuthal component in the Fourier transform.  The two sets of coefficients, Gn(R) and gn(r), are 
connected by what is called the Fourier-Bessel transform. 

  (5) 

In practice, the above integral would normally only be evaluated out to some resolution limit (i.e. 
with R < ∞). 

The inverse relationship also holds: 

  (6) 

where r0 is the radial limit of the object. 

Examples of the relationship between objects with n-fold sinusoidal variations in azimuth (gn(r)) 
and the corresponding Fourier-Bessel transforms (Gn(R)) are illustrated in Figs. III.106 and III.107. 

4) Phase Origin 
It is essential that the origin of the polar coordinate system lie on the symmetry axis of the 

particle image.  Initially, the origin chosen by eye during the boxing procedure necessarily becomes 
the phase origin of the Fourier transform.  The origin point is then shifted to get the best Pn for the 
assumed symmetry (Fig. III.108).  By changing the assumed symmetry, m, one gets a series of 
origins and computes for each of these separate origins a series of rotational power spectra.  These 
are compared to look for the dominant symmetry. 

Fig. III.106.  (Left two columns) Density functions with 2-, 3-, and 4-fold azimuthal variations and the corresponding Fourier-
Bessel transforms.  (Right two columns) Two-fold azimuthal density functions of different radii and orientation and the 
respective Fourier-Bessel transforms.  (Taken from Crowther unpublished course notes, 1973) 
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5) Synthesis of fi ltered image 
One typically examines the rotational power spectra computed from several different particle 

images to get an idea of the relative preservation of the particles.  Those images that show the 
highest Pn are used to synthesize rotationally filtered images.  Equation (5) is used to convert each 
Gn to a corresponding gn and only those gn for which n is a multiple of m are computed, thereby 
omitting all other components considered to be noise.  Noise may arise from several sources such 
as: 

1) The particle may not be viewed directly along an axis of symmetry 
2) The particle may be distorted or may be non-uniformly stained, shadowed, etc. 
3) The other usual forms of noise (e.g. support film, electron optical effects, etc.) may be 

present.  
The Gn(R) are computed from the Fourier transform by the inverse of equation (4): 

  (7) 

In using equation (5) to compute the gn(r), n is set to some limit since Pn is effectively zero 
beyond certain n (resolution limit).  The highest value used for n, thus limits the fineness of detail 
that can be seen in the reconstructed image. 

Note that the computation of Gn(R) from F(R,Φ) (equation 7) allows the Pn to be computed either 
from densities directly (equation 2) or from the Fourier transform as follows: 

   (8) 

Once the gn(r) are computed, equation (1) is used to resynthesize the density function, ρ(r,φ).  
This polar image is then reconverted back to a Cartesian format, ρ(x,y), and displayed (e.g. Figs. 
III.102, III.109, and III.110). 

Fig. III.107.  An object consisting of two rings 
of radii a and 2a, each with an n-fold azimuthal 
variation (left) gives rise to overlapping Bessel 
functions which tend to cancel apart from 
their major peaks (right).  (Taken from 
Crowther unpublished course notes, 1973) 

Fig. III.108.  A plot of the residual function obtained when determining the 
best position for the origin of a T4 bacteriophage base plate (particle A, 
Fig. III.97), based on an assumed 6-fold symmetry.  The origin is shifted 
by steps Δx, Δy of approximately 2.5 Å from the initial approximate 
position chosen by eye.  For a particle with perfect 6-fold symmetry the 
residual should be zero when the origin coincides with the 6-fold axis.  It 
is the sharpness of the minimum that is important for accurate 
determination of the position of the origin, and it can be seen that, in this 
case, the residual approximately doubles for a shift of origin of about 10 
Å from the position corresponding to the minimum.  (From Crowther and 
Amos, 1971, p.125) 
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6) Comparison of Numerical and Photographic Superposition Methods 

Recall the analogy of optical filtering and translational photographic superposition with crystalline 
(translationally symmetric) specimens (§ III.D.2.g).  The optical diffraction pattern of such a 
specimen is basically a translational power spectrum of the specimen image.  This diffraction 
pattern makes possible the objective analysis of the periodicities and preservation of the object's 
translational symmetry. 

It is not possible to perform optical filtering of rotationally symmetric objects because the wanted 
and unwanted Fourier components are not spatially separated in the diffraction plane.  Thus, it is 
necessary to compute the power spectrum and filter the image numerically.  This procedure, like 
with translationally-symmetric specimens, involves two steps: 

1. Analysis (Fourier analysis) to separate the image into Fourier components. 
2. Synthesis (Fourier synthesis) to recombine just those components that satisfy the symmetry. 

Photographic superposition methods attempt to determine the symmetry AND produce an 
average at the same time.  The digital filtering approach is more reliable and powerful because of 
the separation of these two steps.  An additional benefit of the digital processing procedure is that 
it provides quantitative assessment.  Other advantages are that more complex operations can be 
performed on numerical data (e.g. CTF corrections), and it is a relatively straightforward procedure 
to combine data from a number of different images and compute difference images. 

Fig. III.109.  (a) and (c) Images of negatively stained discs of tobacco 
mosaic virus protein.  (b) and (d) Results of 17-fold filtering of the 
images shown in (a) and (c), respectively.  These images are well 
preserved as judged by the dominance of a single rotational symmetry in 
the power spectrum (Fig. III.103(a)).  Note that the two filtered images, 
which have been processed in an identical manner, are of opposite hand, 
thus confirming the polar nature of the disc.  The density level in plotting 
has been chosen to be rather high in order to emphasize the azimuthally 
varying component, thereby accentuating the hole at center of the 
particle.  (From Crowther and Amos, 1971, Plate II) 

Fig. III.110.  (a) Image of a negatively stained disc of tobacco mosaic virus protein.  This is a poorly preserved particle as 
judged by the rotational power spectrum (Fig. III.103(b)).  (b), (c), and (d) show respectively the results of 16-, 17- and 
18-fold filtering.  16-fold filtering produces the most eye-catching image, although it is not the strongest harmonic.  (From 
Crowther and Amos, 1971, Plate III) 
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