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III.D.4. 2D and 1D Digital Fourier Reconstruction Methods

Images of biological specimens can be processed in a variety of different ways, some of which are
more popular or better established than others.  Most processing methods are relatively straight-
forward, but occasionally one will encounter a difficult specimen that may require the use of a
novel strategy.  In general, the type of specimen examined dictates the type of method applied.   A
convenient classification of specimens can be made according to the shape or symmetry of the
specimen.  

Though ultimately our interest is in learning the full three-dimensional structure of the
molecules that we image in the microscope, it can be quite informative to compute image recon-
structions by Fourier methods in two dimensions, or sometimes even in one dimension (e.g.
helices).  Also, a large number of biological macromolecules such as membranes, cell walls, and
some naturally occurring crystals are planar (2D) objects and make excellent subjects for Fourier
image analysis in both 2D and 3D.

a. 2D Fourier averaging of specimens with 2D translational symmetry

Planar objects are considered two-dimensional because one dimension is smaller or much
smaller than the other two.  For many specimens that fit this description, the shortest dimension i s
often 50 nm or smaller and includes only one or a few ‘unit cells’ in the direction normal to the
plane of the specimen (parallel to the electron beam when the specimen is untilted in the electron
microscope).  Though these type specimens can be analyzed with optical or photographic
superposition methods, the digital Fourier methods are particularly powerful because they are
quantitative and rigorous.

The methods and applications of 2D Fourier image processing for analyzing images of planar
specimens can be found in numerous primary literature articles (see Reference Reading List,
pp.6-7, for several examples).  Examples of planar specimens that have been studied by 2D and 3D
reconstruction techniques are the purple membrane, cytochrome oxidase vesicles, membrane-
bound ribosomes, actin filament bundles and actin sheets, tubulin sheets, bacterial cell layers, RNA
polymerase crystals, gap junction membranes, and tropomyosin crystals to name a few.

The following list briefly outlines the basic steps involved in analyzing the images of regular
(i.e. highly ordered or crystalline) planar specimens.  After the basic strategy is outlined, several
figures are included to help illustrate various aspects of the procedures.

Protocol for Fourier averaging images of 2D crystals:

1) After a visual screening step (to toss obvious bad micrographs), select a subset of
micrographs that give the highest quality optical diffraction patterns.  Highly coherent
crystalline areas give strong, sharp Bragg reflections to 'high' resolution (e.g. ~15-20Å
for negatively stained crystals recorded with minimum irradiation techniques).  Look for
minimal radiation damage, astigmatism, and specimen drift or vibration and for 'best'
defocus (i.e. giving the desired CTF characteristics) and highest resolution (most spots i n
all directions).

2) Digitize the micrograph at a sampling interval fine enough not  to limit image resolution but
not too fine or the digitized image will consist of many more pixels than is necessary, which
results in needless computations.  

3) Box (window) out the desired region of interest, making sure to exclude, if possible, as
much of the unneeded portions of the digitized image as is practical.  This is easy to do with
'perfect' specimens like catalase crystals that grow large enough (several µm2) to fill the
entire field of view at 30,000 magnification or higher.

4) Float the boxed image by subtracting from every pixel within the image the average value of
the pixels that form the perimeter of the box.                

5) Fourier transform the boxed, digitized image.  With some software, the image must first be
padded with zeroes so the image that is transformed has dimensions that are a power of two
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such as 2562 or 5122 or 256 x 512 or 128 x 1024, etc.  Generally, owing to Friedel's Law,
just the 'top half' of the Fourier transform need be computed (i.e. k values 0 or positive
only).  The transform is stored as structure factor A (real) and B (imaginary) parts.
Hence, for a 5122 image, the resulting transform will consist of 512 by 256 complex
numbers.

6) Display and index the diffraction pattern on a graphics workstation.  This indexing could be
performed on an optical diffraction pattern, however, the digital transform allows one to
quantitatively check other properties of the specimen such as the presence of certain plane
group symmetries.  The existence, for example, of a three-fold axis of symmetry at the unit
cell origin, for noise free data, will restrict the structure factor phases to be multiples of
120°.  The noisier the image the more the symmetry related structure factor phases w i l l
deviate from the 120° relationship.

7) Perform either pseudo-optical filtering or Fourier averaging of the data.  In pseudo-optical
filtering, filter masks can be computer generated with 'holes' of a specified size distributed
on a lattice either covering the whole transform or limited at some specified upper
resolution boundary.  The computer-generated mask is then multiplied times the Fourier
transform and the result is back-transformed to generate the filtered image.  A number of
variations of pseudo-optical filtering can be employed.  For example, low and/or high-pass
as well as lattice filter masks can be generated to perform different types of filtering of the
data.  Also, the holes can be given a Gaussian weight so the value at the center of the hole i s
1.0 but then drops to 1/exp at the edge of the hole where the mask has a value of zero.  The
Fourier filtered image is obtained by back transforming the masked transform.

To compute a Fourier-averaged reconstruction, in which all unit cells within the boxed
area are averaged together, the data in the vicinity of each Bragg reflection are averaged or
integrated together or are sampled to reduce the data to a single structure factor.  This i s
equivalent to the pseudo-filtering experiment in which the hole size is reduced to zero
radius, which has the effect of convoluting the image with a lattice that includes every unit
cell contained within the boxed region of the micrograph.  This convolution forces the image
to obey a perfect translational symmetry (i.e. p1 plane group).  Again, a number of
variations of this process can be implemented to produce different Fourier averages.  The
average structure of a single unit cell (all unit cells are identical in a Fourier average) i s
obtained by back transforming the structure factors (Fourier synthesis).

8. Assess and apply additional symmetry if evidence exists that the specimen obeys symmetry
higher than p1.  This must be performed with due caution because it is very easy to apply
any symmetry you want with computer programs.  Hence, when you impose additional
symmetry, the specimen will, of course, exhibit whatever symmetry has been applied.

Fig.III.90.  Fourier averaging of a negatively stained crystal of cowpea chlorotic mottle virus (CCMV).  (Left) Small portion of CCMV 2D crystal.
(Center) Optical diffraction pattern of small region of CCMV crystal exhibits pseudo tetragonal symmetry (p4) with a=b=375Å.  The true unit cell
is p2121 as exhibited by the phase relationships in the Bragg reflections (see Fig.III.91).  (Right) Grey level display of the Fourier averaged image
of the CCMV crystal, with p2121 symmetry imposed.  The unit cell (white box) contains two virus particles, related to each other by a rotation of
~86°.
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Fig.III.91.  CCMV Fourier average at increasing
resolution limits.  Five contoured views of a
single CCMV particle from the Fourier
average shown in Fig.III.90, are displayed at
progressively higher resolutions, from 75Å
(top left) to 60 (top right) to 45 and 30Å
(middle panels) to 15Å (bottom left).  In
each contour display, the darker lines outline
the stain excluding regions and the lighter
lines outline the negative stain.  (Bottom
right) A representation of one quarter of
the CCMV transform, with large circles
indicting the resolution limits imposed to
produce the displays in the other panels and
open and closed small circles indicate the
phases (0 or 180°, respectively) of each of
the observed Bragg reflections.  The phases
obey the relationships required by plane
group p2121.  Also, note the systematic
absences along the h and k directions of the
diffraction pattern.
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Fig.III.92.  Fourier averaging of image of negatively stained gap junction membrane.  (a) Low magnification view of entire
micrograph shows several stained gap junction membranes.  The area outlined with the square black box was digitized
and displayed on a raster graphics device.  In some regions, two or three junction membranes lie  stacked above one
another on the EM grid.  (b) Display of region boxed and floated from the original micrograph shown in (a).  (c)
Computer graphics display of the intensities in the Fourier transform of (b), with the transform scaled to reveal the
contrast transfer function of the microscope.  Note the slight astigmatism revealed in the non-circular noise pattern.
(d) Same as (c) but scaled to show just the most intense peaks in the transform.  The h,k=0,2 Bragg reflection is
encircled.  (e) Same as (d) with a reciprocal lattice overlay.  (f) Structure factor amplitudes (on left) and phases (on
right) extracted from the 5122 transform for the region centered about the h,k=0,2 reflection circled in (d,e).  Each
phase value is divided by 10 (e.g. a phase of 23 at the center actually represents a phase of 230°).  A single structure
factor amplitude (5598.3) is integrated from within a circle like the one depicted, centered at position -0.03 in x and -
0.39 in y, with respect to the grid point in the center of each window of data points (amp=85, phase=23).  The single
structure factor phase (232.3°) is calculated by interpolation from the four data points closest to the calculated center
of the 0,2 spot.  (g) Fourier average computed by back transformation of the set of structure factors extracted as
shown in (f).
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Fig.III.93.  Indexed, optical diffraction pattern of tubulin Zn sheets which were negatively stained with uranyl acetate.
This image was recorded under minimal dose conditions (~20e-/Å2).  The equatorial and meridional axes are labeled h and
k, respectively.  The intensity distribution obeys a near perfect mm relationship (i.e. each spot has two mirror-related
mates reflected across the h and k  mirror lines.  Measurement of the a* and b* dimensions in the orthogonal reciprocal
lattice indicates an orthogonal (rectangular) unit cell with a=97Å, b=82Å, and γ=90°.  Systematic absences along the h
direction reveal the presence of a 21 screw axis parallel  to the a cell direction.  (From Baker and Amos, 1978, p.96)

Fig.III.94.  Image reconstructions of four individual Zn
tubulin sheets and their average (bottom panel).  Dark
lines represent contours of density form zero to
successively higher positive amplitudes.  Light lines
represent contours at negative amplitudes.  (a-d)
Individual reconstructions from four images, showing
corresponding regions of the structure.  Subunits are
labeled to indicate possible pairing of monomers into
heterodimers, and to show the relationship of dimers in
adjacent protofilaments.  The α and β labels are arbitrary.  
(e) Average reconstruction of the four sheets (a) to
(d), showing contents of several unit cells.  One cell is
outlined, and the positions of the dyad screw axes are
indicated by broken lines with half arrows.  Note,
however, that NONE of these reconstructions have had
a perfect screw axis symmetry enforced.  (From Baker
and Amos, 1978, p.99)
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Fig.III.95.  Optical transform quadrants of unstained purple membrane micrographs taken in bright-field microscopy:  (a)
Low dose image, (b) High dose image.  Diffraction bar = 1/33Å.  (From Misell, p.174; adapted from Unwin and Henderson,
1975)

Fig.III.96.    Contour map of the projected
structure of purple membrane at 7Å
resolution.  Thicker lines show positive
contours; positive peaks are due to high
concentrations of scattering material
(protein).  Low density regions indicated
by thinner lines are due to lipid and
glucose.  Unit cell dimensions are 62Å x
62Å.  (From Misell, p.175; adapted from
Unwin and Henderson, 1975)
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b. 2D averaging of objects with point group symmetry: rotational filtering

Specimens that only possess rotational symmetry, such as
individual oligomeric proteins, spherical viruses, and
bacteriophage baseplates (Fig.III.97), have been studied by
several image processing methods.  These include 2D
rotational photographic-superposition and 2D digital
rotational filtering, and 3D reconstruction.  In this section,
only the 2D averaging methods are discussed.  Digital,
rotational filtering and photographic superposition techniques
produce qualitatively similar results, but the photographic                       
methods should be used with caution and usually with                                                                     
specimens displaying obvious or well-established symmetry.
Crowther and Amos (1971) and Misell (1978) compare the
real-space and Fourier-space methods.

FIg.III.97  A negatively stained preparation of base plates from
bacteriophage T4.  Rotationally filtered images of particles A and B are
shown in Fig.III.102.  (From Crowther and Amos, 1971, Plate I)

1) Rotational photographic superposition method

Markham et al. (1963) devised a simple, real-space
method for analyzing images of particles with rotational
symmetry.  The basic apparatus used  consists of a
photographic enlarger and a movable board to which a card i s
attached that can be rotated about an axis (Fig.III.98).  The
specimen image is projected onto a photographic print
attached to the card and a series of n images are exposed onto
the print, with the print rotated by 360°/n after each of n
exposures.  For example, if the object of interest had 6-fold
rotational symmetry, and a normal, straight photographic
print required a 12 second exposure, then a total of six, two-
second exposures would be required to produce the rotational
superposition photographic image.  Presumably, maximum
reinforcement of detail is given when n is the true periodicity
in the image of the object.  This presumes, of course, that the
rotation axis of the print can be positioned accurately at the
center of symmetry in the image.  If they do not coincide, the
true symmetry of the object may be missed and details w i l l
certainly get smeared out in the reconstruction.  Thus, the
correct centering of the photographic print with respect to
the rotational symmetry axis in the image and the correct
choice of n  are important components in successful
application of this method.  A mistake in either choice leads to
erroneous results.

The main disadvantage of the optical superposition method      
is that it requires a visual assessment step, which may be            
more influenced, by what is eye-catching rather than what is correct.  The computational,                                                                                                  
rotational filtering method that is described in the next section provides quantitative information i n
the form of the rotational power spectrum (RPS).  The RPS allows quantitative assessment of the
presence of a particular rotational symmetry.  Once the symmetry is known, a filtered image can be
resynthesized from only those components that obey the chosen rotational symmetry.

A second type of apparatus for producing rotationally symmetrized images by the photographic
superposition method is shown below (Fig.III.99).

Fig.III.98.  Apparatus for integrating detail
in micrographs with radial symmetry.  (a)
Enlarger unit containing micrograph with
region to be studied accurately centered
in relation to the lens.  (b) Movable board
containing rotary disc.  (c) The center of
rotation must be carefully aligned to the
selected region of the micrograph shown
at (a).  (From Horne and Markham, p.413)
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Fig.III.99.  The arrangement of an apparatus for analyzing electron micrographs by rotational integration with the aid of a
strobe illuminator.  (From Horne and Markham, p.415)

2) 2D digital processing of rotationally symmetric particles- Power spectrum and rotational
filtering analysis

Conversion from Cartesian to Polar Form
The digitization, boxing, and floating of the

specimen image is performed as usual and
subsequent computations are conveniently
performed in polar coordinates ( r ,φ )
(Fig.III.100).  Thus, a Cartesian image, ρ(x,y), i s
converted to a polar image, ρ(r,φ), by subdividing
the Cartesian image into a series of equally spaced
annuli (Fig.III.101) and interpolating the densities
within each annulus.  The polar density function
can be expanded into a series of circular waves much as a Cartesian image is conveniently expanded               
into a series of plane waves (Fig.III.101).

Fig.III.101.  The Fourier method for finding rotational symmetry.  The image (a) is divided into a series of concentric,
equal-spaced annuli, of which one (b) is expressed as the sum of two of its rotational Fourier components ((c), the zero-
fold and (d) the eight-fold symmetric component).  The Fourier transforms of (c) and (d) are shown in (e) and (f),
respectively.  (From Moody, p.239)

Fig.III.100. Cartesian (x,y) and polar (r,φ) coordinate
systems in real (left) and reciprocal (right) space.
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ρ(r,φ) = gn (r)einφ
n=−∞

∞

∑ ( 1 )

In equation (1),each gn(r) represents the weight of the n-fold azimuthal component of the image
at a radius r.  The phase term, exp(inφ), positions the peak of each circular wave with respect to an
origin (usually the x axis) so that all gn(r) are properly summed.

Rotational Power Spectrum                                              
Each gn(r) is integrated over the radius of the particle, a, to obtain a measure of the total n-fold

rotational component of the image.  Power in the image is defined as:

€ 

Pn = εn gn(r)
2

0

a

∫ 2πrdr, εn =
1 for n = 0
2 for n > 0
 
 
 

( 2 )

εn = 2 accounts for the fact that Pn has equal contributions from gn and g-n for n>0.

The rotational power spectrum is a plot of Pn as a function of n.  This is a compact way to
represent the rotational symmetry components in the image.  P0 is usually normalized to 1.0 and
the spectrum is displayed with the Pn on a logarithmic scale (Figs.III.102 and 103).

FIg.III.102.  (Left) A logarithmic plot of the rotational power spectrum
of a T4 bacteriophage base plate (particle  A in Fig.III.97), showing the
strong 6-fold symmetry of the image.  The curve is normalized with Po
= 1 and the power associated with rotational frequencies higher than n
= 36 is less than 0.001.  (From Crowther and Amos, 1971, Fig.2, p.126).
(Top) 6-fold rotationally-symmetrized images of negatively stained
base plates from bacteriophage T4 (particles labeled A and B in
Fig.III.97).  Although the two filtered images have rather different
appearances, because they have been plotted at different density
levels, the main features of each are very similar.  (From Crowther and
Amos, 1971, Plate I)

Fig.III.103. Logarithmic plots of the rotational power
spectra of two images of discs of tobacco mosaic virus
protein.  (a) A well-preserved disc (Fig.III.104(a)) in
which no one component is dominant.  In each case the
solid curve (-● -) refers to a choice of origin that
maximizes the 17-fold component.  In (a) the triangles
(▲ ) refer to a choice of origin which simultaneously
maximizes the 16- and 18-fold components, while in (b)
the triangles (▲) and squares (■) refer to choices of
origin which maximize respectively the 16- and 18-fold
components.  The curves are normalized with Po = 1 and
the power associated with rotational frequencies higher
than n = 26 is less than 0.001.  (From Crowther and
Amos, 1971, p.127)
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Fig.III.105.  (a) Image of a negatively stained disc of tobacco mosaic virus protein.  This is a poorly preserved particle as
judged by the rotational power spectrum (Fig.III.103(b)).  (b), (c), and (d) show respectively the results of 16-, 17- and
18-fold filtering.  16-fold filtering produces the most eye-catching image, although it is not the strongest harmonic.
(From Crowther and Amos, 1971, Plate III)

3) Fourier Bessel Transform

As with other types of specimens, it is convenient with rotationally-symmetric specimens to
perform computations in Fourier space rather than real space.  The polar Fourier transform
coordinates are R and Φ.  The transform is expanded in the following way:

F(R,Φ) = gn(r )
0

a

∫ Jn (2πrR)ein(Φ+π 2 )
n= −∞

n= +∞

∑ 2πrdr ( 3 )

= Gn (R)ein (Φ+π 2 )

n= −∞

n= +∞

∑ ( 4 )

Jn(X) is a Bessel function of order n.  Each Jn is a circularly-symmetric, oscillatory function
(Fig.III.106).  The first maximum of Jn(X) for large n (i.e. n > about 5) appears at about X = n+2.

The transform of a ring of radius a is given by 2πaJ0(2πaR) (Fig.III.107).  Such a ring can be
considered to be generated from a pair of points, separated by the distance 2a that are rotated
through the angle π.  A single pair of points at opposite sides of a circle gives rise to cosine fringes.
When rotationally averaged, the fringes reinforce at the origin but tend to cancel away from the
origin.  This gives rise to a Bessel function of zero order (J0) .

Fig.III.104.  (a) and (c) Images of negatively stained discs of tobacco
mosaic virus protein.  (b) and (d) Results of 17-fold filtering of the
images shown in (a) and (c), respectively.  These images are well
preserved as judged by the dominance of a single rotational symmetry in
the power spectrum (Fig.III.103(a)).  Note that the two filtered images,
which have been processed in an identical manner, are of opposite hand,
thus confirming the polar nature of the disc.  The density level in
plotting has been chosen to be rather high in order to emphasize the
azimuthally varying component, thereby accentuating the hole at center
of the particle.  (From Crowther and Amos, 1971, Plate II)
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Fig.III.106.  (Left) The behavior of the Bessel function Jn(X) for various values of n.  (From Sherwood, p. 565).  (Right)
Amplitude variations of the Bessel function Jn(X) for n = 0 to 3.  (From Misell, p.98)

δ ( r - a ) 2πaJ0(2πaR)

The expansion of the Fourier Transform (equation 4) is analogous to the expansion of the polar
image densities as given in equation (1).  Thus, the Gn (R) are the coefficients (weights) of each
azimuthal component in the Fourier transform.  The two sets of coefficients, Gn(R) and gn( r) , are
connected by what is called the Fourier-Bessel transform.

gn(r) = Gn (R)Jn(2πRr)2πRdR
0

∞

∫ ( 5 )

In practice, the above integral would normally only be evaluated out to some resolution limit (i.e.
with R < ∞).

The inverse relationship also holds:

Gn (R) = gn (r)Jn (2πrR)2πrdr
0

a

∫ ( 6 )

where r0 is the radial limit of the object.

Examples of the relationship between objects with n-fold sinusoidal variations in azimuth
(gn(r)) and the corresponding Fourier-Bessel transforms (Gn(R)) are illustrated in Fig.III.108.

4) Phase Origin

It is essential that the origin of the polar coordinate system lie on the symmetry axis of the
image.  Initially, the origin chosen by eye during the boxing procedure necessarily becomes the
phase origin of the Fourier transform.  The origin point is then shifted to get the best Pn for the
assumed symmetry.  By changing the assumed symmetry, m , one gets a series of origins and
computes for each of these separate origins a series of rotational power spectra.  These are
compared to look for the dominant symmetry.

Fig.III.107.   A ring (left) and its transform (right).  (Taken from Crowther unpublished course notes, 1973)



BIO 595W 3D RECONSTRUCTION OF MACROMOLECULES

252

Fig.III.108.  (Left two columns) Density functions with 2-, 3-, and 4-fold azimuthal variations and the corresponding
Fourier-Bessel transforms.  (Right two columns) Two-fold azimuthal density functions of different radii and orientation
and the respective Fourier-Bessel transforms.  (Taken from Crowther unpublished course notes, 1973)

Fig.III.109.  An object consisting of two rings of radii a and 2a , each with an n-fold azimuthal variation (left) gives rise to
overlapping Bessel functions which tend to cancel apart from their major peaks (right).  (Taken from Crowther
unpublished course notes, 1973)

Fig.III.110.  A plot of the residual function obtained when determining the
best position for the origin of a T4 bacteriophage base plate (particle A,
Fig.III.97), based on the assumption of 6-fold symmetry.  The origin is
shifted by steps Δx, Δy of approximately 2.5 Å from the initial approximate
position chosen by eye.  For a particle with perfect 6-fold symmetry the
residual should be zero when the origin coincides with the 6-fold axis.  It is
the sharpness of the minimum that is important for accurate
determination of the position of the origin, and it can be seen that, in this
case, the residual approximately doubles for a shift of origin of about 10 Å
from the position corresponding to the minimum.  (From Crowther and
Amos, 1971, p.125)
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5) Synthesis of filtered image

One typically examines the rotational power spectra computed from several different particle
images to get an idea of the relative preservation of the particles.  Those images that show the
highest Pn are used to synthesize rotationally-filtered images.  Equation (5) is used to convert each
Gn to a corresponding gn and only those gn for which n is a multiple of m are computed, thereby
omitting all other components considered to be noise.  Noise may arise from several sources such as:

1) the particle may not be viewed directly along an axis of symmetry

2) the particle may be distorted or may be non-uniformly stained, shadowed, etc.

3) the other usual forms of noise (e.g. support film, electron optical effects, etc.) may be
present.

The Gn(R) are computed from the Fourier transform by the inverse of equation (4):

Gn(R) =
1
2π F(R,Φ)e−in(Φ+π 2 )dΦ

0

2π

∫ ( 7 )

In using equation (5) to compute the gn(r), n is set to some limit since Pn is effectively zero
beyond certain n (resolution limit)  Setting an upper limit for n, thus limits the fineness of detail
that can be seen in the reconstructed image.

Note that the computation of Gn(R) from F(R,Φ) (equation 7) allows the Pn to be computed either
from densities directly (equation 2) or from the Fourier transform as follows:

€ 

Pn = εn Gn (R)
2

0

Rmax

∫ 2πRdR ( 8 )

Once the gn(r) are computed, equation (1) is used to resynthesize the density function, ρ(r,φ) .
This polar image is then reconverted back to a Cartesian format, ρ(x,y), and displayed (e.g. Figs.
III.102, 104, and 105).

5) Comparison of Numerical and Photographic Superposition Methods

Recall the analogy of optical filtering and translational photographic superposition with
crystalline (translationally symmetric) specimens (Sec.III.D.2.g, p.231).  The optical diffraction
pattern of such a specimen is basically a translational power spectrum of the specimen image.  This
diffraction pattern makes possible the objective analysis of the periodicities and preservation of the
object's translational symmetry.

It is not possible to perform optical filtering of rotationally symmetric objects because the       
wanted and unwanted Fourier components are not spatially separated in the diffraction plane.  Thus,
it is necessary to compute the power spectrum and filter the image numerically.  This procedure,
like with translationally-symmetric specimens, involves two steps:

1. Analysis (Fourier analysis) to separate the image into Fourier components.

2. Synthesis (Fourier synthesis) to recombine just those components that satisfy the symmetry.

Photographic superposition methods attempt to determine the symmetry AND produce an average
at the same time.  The digital filtering approach is more reliable and powerful because of the
separation of these two steps.  An additional benefit of the digital processing procedure is that i t
provides quantitative assessment.  Other advantages are that more complex operations can be
performed on numerical data (e.g. CTF corrections), and it is a relatively straightforward
procedure to combine data from a number of different images and compute difference images.


