III.D. 5 3D Fourier Reconstruction Methods

III.D.5.a 3D Reconstruction of Objects with Icosahedral Symmetry

Overall Scheme for 3-D Reconstruction

Generally the available views of the specimen do not give an even sampling of data in the Fourier transform

III.D. 5 3D Fourier Reconstruction Methods
 III.D.5.a 3D Reconstruction of Objects with Icosahedral Symmetry

2-fold setting used for specifying direction of view

III.D. 5 3D Fourier Reconstruction Methods

III.D.5.a 3D Reconstruction of Objects with Icosahedral Symmetry

III.D. 5 3D Fourier Reconstruction Methods

III.D.5.a 3D Reconstruction of Objects with Icosahedral Symmetry

Interpolation in Polar Coordinates - 2D Case

Expanded object density: $\rho(r, \phi)=\sum_{n} g_{n}(r) e^{i n \phi}$
Fourier transform: $F(R, \Phi)=\sum_{n} \int_{\text {object }} i^{n} g_{n}(r) J_{n}(2 \pi r R) e^{i n \Phi} 2 \pi r d r$

$$
=\sum_{n} \int_{o b j e c t} g_{n}(r) J_{n}(2 \pi r R) e^{i n(\Phi+\pi / 2)} 2 \pi r d r
$$

$$
=\sum_{n} \underbrace{G_{n}(R)}_{\begin{array}{c}
\text { radial } \\
\text { variation }
\end{array}} \underbrace{e^{i n(\Phi+\pi / 2)}}_{\begin{array}{c}
\text { angular } \\
\text { variation }
\end{array}}
$$

III.D. 5 3D Fourier Reconstruction Methods

III.D.5.a 3D Reconstruction of Objects with Icosahedral Symmetry

Interpolation in Polar Coordinates - 2D Case

Recall from the discussion of rotationally symmetric objects that the Fourier-Bessel (or Hankel) transform relations are:

$$
G_{n}(R)=\int_{\text {object }} g_{n}(r) J_{n}(2 \pi r R) 2 \pi r d r
$$

and g_{n} and G_{n} are reciprocally related:

$$
g_{n}(r)=\int_{\text {transform }} G_{n}(R) J_{n}(2 \pi r R) 2 \pi R d R
$$

III.D. 5 3D Fourier Reconstruction Methods

III.D.5.a 3D Reconstruction of Objects with Icosahedral Symmetry

Interpolation in Polar Coordinates - 2D Case

$$
\begin{aligned}
& G_{n}(R)=\int_{\text {object }} g_{n}(r) J_{n}(2 \pi r R) 2 \pi r d r \\
& g_{n}(r)=\int_{\text {transform }} G_{n}(R) J_{n}(2 \pi r R) 2 \pi R d R
\end{aligned}
$$

Each g_{n} is a real wave and each G_{n} represents a particular J_{n} weighted by the strength of that angular component at a particular radius, R, in the transform

III.D. 5 3D Fourier Reconstruction Methods

III.D.5.a 3D Reconstruction of Objects with Icosahedral Symmetry

Interpolation in Polar Coordinates - 2D Case

$$
\begin{aligned}
& G_{n}(R)=\int_{\text {object }} g_{n}(r) J_{n}(2 \pi r R) 2 \pi r d r \\
& g_{n}(r)=\int_{\text {transform }} G_{n}(R) J_{n}(2 \pi r R) 2 \pi R d R
\end{aligned}
$$

Overall scheme: Compute from $F \rightarrow \mathbf{G} \rightarrow \mathrm{~g} \rightarrow \rho$

III.D. 5 3D Fourier Reconstruction Methods
 III.D.5.a 3D Reconstruction of Objects with Icosahedral Symmetry

3-D Reconstruction

To obtain sufficient image data to compute a 3-D reconstruction, projected views of the object may be collected by tilts about a single axis

As a consequence of the projection theorem, such strategy would produce a sampling (a star of lines) in each Zplane of the 3-D Fourier transform:

III.D. 5 3D Fourier Reconstruction Methods
 III.D.5.a 3D Reconstruction of Objects with Icosahedral Symmetry

3-D Reconstruction

Cylindrical polar coordinate system used to describe the 3-D transform, which is sampled on planes of constant Z and on annuli of constant R within each plane

Example of how one central plane, corresponding to a particular view of the object, cuts the various annuli is depicted

III.D. 5 3D Fourier Reconstruction Methods
 III.D.5.a 3D Reconstruction of Objects with Icosahedral Symmetry

3-D Reconstruction

As a consequence of the projection theorem, such strategy would produce a sampling (a star of lines) in each Zplane of the 3-D Fourier transform:

2D illustration of interpolation in polar coordinates

III.D. 5 3D Fourier Reconstruction Methods
 III.D.5.a 3D Reconstruction of Objects with Icosahedral Symmetry

3-D Reconstruction

A cylindrical expansion is made on each annulus, using transform values at points where the available data planes cut the annulus (indicated by crosses)

2D illustration of interpolation in polar coordinates

III.D. 5 3D Fourier Reconstruction Methods
 III.D.5.a 3D Reconstruction of Objects with Icosahedral Symmetry

3-D Reconstruction

On annulus R the Fourier transform is given by:

$$
F\left(\Phi_{j}\right)=\sum_{n} G_{n} i^{i} e^{i n \Phi_{j}}
$$

2D illustration of interpolation in polar coordinates

III.D. 5 3D Fourier Reconstruction Methods
 III.D.5.a 3D Reconstruction of Objects with Icosahedral Symmetry

3-D Reconstruction

On annulus R the Fourier transform is given by:

$$
F\left(\Phi_{j}\right)=\sum_{n} G_{n} i^{n} e^{i m \Phi_{j}}
$$

Using shorthand:

$$
F_{j}=\sum_{n} G_{n} B_{j n}
$$

where

$$
B_{j n}=i^{n} e^{i n \Phi_{j}}=e^{i n\left(\Phi_{j}+\pi / 2\right)}
$$

III.D. 5 3D Fourier Reconstruction Methods
 III.D.5.a 3D Reconstruction of Objects with Icosahedral Symmetry

3-D Reconstruction

$$
B_{j n}=e^{i n\left(\Phi_{j}+\pi / 2\right)}
$$

For given angular positions in the Fourier transform, Φ_{j}, and observed F_{j}, these are linear equations that can be solved for G_{n}, provided a sufficient number of views can be included

III.D. 5 3D Fourier Reconstruction Methods
 III.D.5.a 3D Reconstruction of Objects with Icosahedral Symmetry

3-D Reconstruction

Arrangement of lines where a primary plane of data, normal to a two-fold axis of an icosahedral particle, and the planes related to it by symmetry intersect the transform plane $Z=1 / 6 \mathrm{~nm}^{-1}$

Spacing of annuli $=1 / 60 \mathrm{~nm}^{-1}$
Note the uneven nature of the sampling around each annulus

Crowther, DeRosier and Klug, 1970, p. 329

III.D. 5 3D Fourier Reconstruction Methods

III.D.5.a 3D Reconstruction of Objects with Icosahedral Symmetry

3-D Reconstruction

3-D object density given by following expansion equation:

$$
\begin{equation*}
\rho(r, \phi, z)=\sum_{n=\infty}^{\infty} \int_{-\infty}^{\infty} g_{n}(r, Z) e^{i n g} e^{2 \pi i z} d Z \tag{1}
\end{equation*}
$$

3-D Fourier transform has the form:

$$
\begin{equation*}
F(R, \Phi, Z)=\sum_{n} G_{n}(R, Z) i^{n} e^{i n \Phi} \tag{2}
\end{equation*}
$$

Recall - in 2-D the FT is: $F(R, \Phi)=\sum_{n} G_{n}(R) i^{n} e^{i n \Phi}$

III.D. 5 3D Fourier Reconstruction Methods

III.D.5.a 3D Reconstruction of Objects with Icosahedral Symmetry

3-D Reconstruction

3-D Fourier transform:

$$
\begin{equation*}
F(R, \Phi, Z)=\sum_{n} G_{n}(R, Z) i^{n} e^{i n \Phi} \tag{2}
\end{equation*}
$$

Recall: Just as was true in 2-D, in 3-D $G_{n}(R, Z)$ and $g_{n}(r, Z)$ are related by the Fourier Bessel transformations:

$$
\begin{align*}
& G_{n}(R, Z)=\int_{\text {object }} g_{n}(r, Z) J_{n}(2 \pi r R) 2 \pi r d r \tag{2b}\\
& g_{n}(r, Z)=\int_{\text {transform }} G_{n}(R, Z) J_{n}(2 \pi r R) 2 \pi R d R
\end{align*}
$$

III.D. 5 3D Fourier Reconstruction Methods
 III.D.5.a 3D Reconstruction of Objects with Icosahedral Symmetry

3-D Reconstruction

3-D Fourier transform:

$$
\begin{equation*}
F(R, \Phi, Z)=\sum_{n} G_{n}(R, Z) i^{n} e^{i n \Phi} \tag{2}
\end{equation*}
$$

On annulus R of transform plane Z (called "annulus (R, Z)") we have observations $F\left(\Phi_{j}\right)$ at known Φ_{j}, so:

$$
\begin{equation*}
F\left(\Phi_{j}\right)=\sum_{n} G_{n} i^{n} e^{i n \Phi_{j}} \tag{3}
\end{equation*}
$$

III.D. 5 3D Fourier Reconstruction Methods

III.D.5.a 3D Reconstruction of Objects with Icosahedral Symmetry

3-D Reconstruction

On annulus (R, Z) we have observations $F\left(\Phi_{j}\right)$ at known Φ_{j}, so:

$$
\begin{equation*}
F\left(\Phi_{j}\right)=\sum_{n} G_{n} i^{n} e^{i n \Phi_{j}} \tag{3}
\end{equation*}
$$

This set of linear equations can be solved for G_{n}
The g_{n} are then computed using eqn. (2c):

$$
g_{n}(r, Z)=\int_{\text {transform }} G_{n}(R, Z) J_{n}(2 \pi r R) 2 \pi R d R
$$

III.D. 5 3D Fourier Reconstruction Methods

III.D.5.a 3D Reconstruction of Objects with Icosahedral Symmetry

3-D Reconstruction

Compute g_{n} from (2c):

$$
g_{n}(r, Z)=\int_{\text {transform }} G_{n}(R, Z) J_{n}(2 \pi r R) 2 \pi R d R
$$

(2c)

The 3-D density $\rho(r, \phi, z)$ is computed from (1):

$$
\begin{equation*}
\rho(r, \phi, z)=\sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} g_{n}(r, Z) e^{i n \phi} e^{2 \pi i z Z} d Z \tag{1}
\end{equation*}
$$

III.D. 5 3D Fourier Reconstruction Methods

III.D.5.a 3D Reconstruction of Objects with Icosahedral Symmetry

3-D Reconstruction

The 3-D density $\rho(r, \phi, z)$ is computed from (1):

$$
\begin{equation*}
\rho(r, \phi, z)=\sum_{n=\infty}^{\infty} \int_{-\infty}^{\infty} g_{n}(r, Z) e^{i n \phi} e^{2 \pi i z} d Z \tag{1}
\end{equation*}
$$

In general: It is necessary to include a sufficient number of views so that the set of linear equations (3) will contain many MORE observations than unknowns

$$
\begin{equation*}
F\left(\Phi_{j}\right)=\sum_{n} G_{n} i^{n} e^{i n \Phi_{j}} \tag{3}
\end{equation*}
$$

III.D. 5 3D Fourier Reconstruction Methods
 III.D.5.a 3D Reconstruction of Objects with Icosahedral Symmetry

3-D Reconstruction

$$
\begin{equation*}
F\left(\Phi_{j}\right)=\sum_{n} G_{n} i^{n} e^{i n \Phi_{j}} \tag{3}
\end{equation*}
$$

This set of linear equations is solved by least squares procedures

Equation (3) is rewritten in matrix form as observational equations:

$$
\begin{equation*}
F=B G \tag{4}
\end{equation*}
$$

III.D. 5 3D Fourier Reconstruction Methods

III.D.5.a 3D Reconstruction of Objects with Icosahedral Symmetry

3-D Reconstruction

$$
\begin{gather*}
F\left(\Phi_{j}\right)=\sum_{n} G_{n^{i} e^{n \sigma_{1}}} \tag{3}\\
F=B G
\end{gather*}
$$

Form the normal equations:

$$
B^{\dagger} F=B^{\dagger} B G
$$

III.D. 5 3D Fourier Reconstruction Methods

III.D.5.a 3D Reconstruction of Objects with Icosahedral Symmetry

3-D Reconstruction

$$
\begin{align*}
& F\left(\Phi_{j}\right)=\sum_{n} G_{n} i^{n} e^{i n \Phi_{j}} \tag{3}\\
& F=B G \tag{4}\\
& B^{\dagger} F=B^{\dagger} B G \tag{5}
\end{align*}
$$

This gives a least squares solution of (4) as:

$$
\begin{equation*}
G=\left(B^{\dagger} B\right)^{-1} B^{\dagger} F \tag{6}
\end{equation*}
$$

III.D. 5 3D Fourier Reconstruction Methods

III.D.5.a 3D Reconstruction of Objects with Icosahedral Symmetry

3-D Reconstruction: Algebra Incorporating Symmetry

Standard Setting

5-fold setting used for computing reconstruction

III.D. 5 3D Fourier Reconstruction Methods

III.D.5.a 3D Reconstruction of Objects with Icosahedral Symmetry

3-D Reconstruction: Algebra Incorporating Symmetry

5 -fold setting used for computing reconstruction

Fourier Space

III.D. 5 3D Fourier Reconstruction Methods

III.D.5.a 3D Reconstruction of Objects with Icosahedral Symmetry

3-D Reconstruction: Algebra Incorporating Symmetry

III.D. 5 3D Fourier Reconstruction Methods

III.D.5.a 3D Reconstruction of Objects with Icosahedral Symmetry

3-D Reconstruction: Algebra Incorporating Symmetry

III.D. 5 3D Fourier Reconstruction Methods
 III.D.5.a 3D Reconstruction of Objects with Icosahedral Symmetry

3-D Reconstruction: Algebra Incorporating Symmetry

Recall:

On annulus (R,Z):

$$
\begin{equation*}
F\left(\Phi_{j}\right)=\sum_{\text {all } n} G_{n} i^{n} e^{i \pi \Phi_{j}} \tag{3}
\end{equation*}
$$

III.D. 5 3D Fourier Reconstruction Methods

III.D.5.a 3D Reconstruction of Objects with Icosahedral Symmetry

3-D Reconstruction: Algebra Incorporating Symmetry

On annulus (R,Z): $\quad F\left(\Phi_{j}\right)=\sum_{\text {all } n} G_{n} i^{n} e^{i n \Phi_{j}}$

Use shorthand:

$$
G_{n}^{\prime}=i^{n} G_{n}
$$

To get:

$$
\begin{equation*}
F\left(\Phi_{j}\right)=\sum_{\text {all } n} G_{n}^{\prime} e^{i n \Phi_{j}} \tag{7}
\end{equation*}
$$

III.D. 5 3D Fourier Reconstruction Methods

III.D.5.a 3D Reconstruction of Objects with Icosahedral Symmetry

3-D Reconstruction: Algebra Incorporating Symmetry

$$
\begin{equation*}
F\left(\Phi_{j}\right)=\sum_{\text {all } n} G_{n}^{\prime} e^{i n \Phi_{j}} \tag{7}
\end{equation*}
$$

Express each structure factor, F, in its component real (A) and imaginary (B) parts to get:

$$
\left.\begin{array}{l}
\text { At } \Phi_{j}: \quad A_{j}+i B_{j}=\sum_{\text {positven }}\left(G_{n}^{\prime} e^{i n \Phi_{j}}+G_{-n}^{\prime} e^{-i n \Phi_{j}}\right) \tag{8}\\
\text { At }-\Phi_{j}: A_{j}-i B_{j}=\sum_{\text {posituven }}\left(G_{n}^{\prime} e^{-i n \Phi_{j}}+G_{-n}^{\prime} e^{i n \Phi_{j}}\right)
\end{array}\right\}
$$

Remember, $F\left(-\Phi_{j}\right)$ obeys Friedel relation with $F\left(\Phi_{j}\right)$

III.D. 5 3D Fourier Reconstruction Methods

III.D.5.a 3D Reconstruction of Objects with Icosahedral Symmetry

3-D Reconstruction: Algebra Incorporating Symmetry

$$
\left.\begin{array}{l}
\text { At } \Phi_{j}: \quad A_{j}+i B_{j}=\sum_{\text {positven }}\left(G_{n}^{\prime} e^{i n \Phi_{j}}+G_{-n}^{\prime} e^{-i n \Phi_{j}}\right) \tag{8}\\
\text { At }-\Phi_{j}: A_{j}-i B_{j}=\sum_{\text {positiven }}\left(G_{n}^{\prime} e^{-i n \Phi_{j}}+G_{-n}^{\prime} e^{i n \Phi_{j}}\right)
\end{array}\right\}
$$

Add $\quad 2 A_{j}=\sum_{\text {posituven }} G_{n}^{\prime}\left(e^{i n \Phi_{j}}+e^{-i n \Phi_{j}}\right)+G_{-n}^{\prime}\left(e^{i n \Phi_{j}}+e^{-i n \Phi_{j}}\right)$
Subtract $2 i B_{j}=\sum_{\text {posituven }} G_{n}^{\prime}\left(e^{i n \Phi_{j}}-e^{-i n \Phi_{j}}\right)-G_{-n}^{\prime}\left(e^{i n \Phi_{j}}-e^{-i n \Phi_{j}}\right)(10)$

III.D. 5 3D Fourier Reconstruction Methods

III.D.5.a 3D Reconstruction of Objects with Icosahedral Symmetry

3-D Reconstruction: Algebra Incorporating Symmetry

Equations (9) and (10) can be reduced if we rearrange the equations and recall the following relations:

$$
\begin{aligned}
e^{i n \theta} & =\cos (n \theta)+i \sin (n \theta) \\
e^{-i n \theta} & =\cos (n \theta)-i \sin (n \theta) \\
\cos (-n \theta) & =\cos (n \theta) \\
\sin (-n \theta) & =-\sin (n \theta)
\end{aligned}
$$

III.D. 5 3D Fourier Reconstruction Methods

III.D.5.a 3D Reconstruction of Objects with Icosahedral Symmetry

3-D Reconstruction: Algebra Incorporating Symmetry

$$
\begin{equation*}
2 A_{j}=\sum_{\text {positven }} G_{n}^{\prime}\left(e^{i n \Phi_{j}}+e^{-i n \Phi_{j}}\right)+G_{-n}^{\prime}\left(e^{i n \Phi_{j}}+e^{-i n \Phi_{j}}\right) \tag{9}
\end{equation*}
$$

This can be rearranged to get:

$$
\begin{equation*}
2 A_{j}=\sum_{\text {posititen }}\left(G_{n}^{\prime}+G_{-n}^{\prime}\right)\left(e^{i n \Phi_{j}}+e^{-i n \Phi_{j}}\right) \tag{9c}
\end{equation*}
$$

and $\quad 2 A_{j}=\sum_{\text {postuven }}\left(G_{n}^{\prime}+G_{-n}^{\prime}\right)\left(2 \cos \left(n \Phi_{j}\right)\right)$
because: $\begin{aligned} & e^{i n \theta}=\cos (n \theta)+i \sin (n \theta) \\ & e^{-n \theta}=\cos (n \theta)-i \sin (n \theta)\end{aligned}$

III.D. 5 3D Fourier Reconstruction Methods

III.D.5.a 3D Reconstruction of Objects with Icosahedral Symmetry

3-D Reconstruction: Algebra Incorporating Symmetry

$$
2 i B_{j}=\sum_{\text {positiven }} G_{n}^{\prime}\left(e^{i n \Phi_{j}}-e^{-i n \Phi_{j}}\right)-G_{-n}^{\prime}\left(e^{i n \Phi_{j}}-e^{-i n \Phi_{j}}\right)(10)
$$

This can be rearranged to get:

$$
\begin{equation*}
2 i B_{j}=\sum_{\text {positiven }}\left(G_{n}^{\prime}-G_{-n}^{\prime}\right)\left(e^{i n \Phi_{j}}-e^{-i n \Phi_{j}}\right) \tag{10c}
\end{equation*}
$$

and $\quad 2 i B_{j}=\sum_{\text {positiven }}\left(G_{n}^{\prime}-G_{-n}^{\prime}\right)\left(2 i \sin \left(n \Phi_{j}\right)\right)$
because: $\begin{gathered}e^{i n \theta}=\cos (n \theta)+i \sin (n \theta) \\ e^{-i n \theta}=\cos (n \theta)-i \sin (n \theta)\end{gathered}$

III.D. 5 3D Fourier Reconstruction Methods

III.D.5.a 3D Reconstruction of Objects with Icosahedral Symmetry

3-D Reconstruction: Algebra Incorporating Symmetry

$$
\begin{align*}
& \mathscr{Z} A_{j}=\sum_{\text {posinven }}\left(G_{n}^{\prime}+G_{-n}^{\prime}\right)\left(\not 2 \cos \left(n \Phi_{j}\right)\right) \tag{9d}\\
& 2\left\langle B_{j}=\sum_{\text {positiven }}\left(G_{n}^{\prime}-G_{-n}^{\prime}\right)\left(2 \angle i \sin \left(n \Phi_{j}\right)\right)\right. \tag{10d}
\end{align*}
$$

Divide equation (9d) by 2 and equation (10d) by $2 i$ to get:

$$
\left.\begin{array}{l}
A_{j}=\sum\left(G_{n}^{\prime}+G_{-n}^{\prime}\right) \cos \left(n \Phi_{j}\right) \tag{11}\\
B_{j}=\sum\left(G_{n}^{\prime}-G_{-n}^{\prime}\right) \sin \left(n \Phi_{j}\right)
\end{array}\right\}
$$

III.D. 5 3D Fourier Reconstruction Methods

III.D.5.a 3D Reconstruction of Objects with Icosahedral Symmetry

3-D Reconstruction: Algebra Incorporating Symmetry

$$
\left.\begin{array}{l}
A_{j}=\sum\left(G_{n}^{\prime}+G_{-n}^{\prime}\right) \cos \left(n \Phi_{j}\right) \tag{11}\\
B_{j}=\sum\left(G_{n}^{\prime}-G_{-n}^{\prime}\right) \sin \left(n \Phi_{j}\right)
\end{array}\right\}
$$

Since A_{j}, B_{j}, Φ_{j}, are known (recall, we have experimental $F(\Phi)$ values), it is necessary to solve for ($G_{n}^{\prime}+G_{-n}^{\prime}$) and ($\left.G_{n}^{\prime}-G^{\prime}{ }_{-n}\right)$

Hence, values of G_{n}^{\prime} and G_{-n}^{\prime} can be found, and, because the relation between G_{n}^{\prime} and G_{n} is known (i.e. $G_{n}^{\prime}=i^{i n} G_{n}$), the values of G_{n} and G_{-n} can be determined

III.D. 5 3D Fourier Reconstruction Methods

III.D.5.a 3D Reconstruction of Objects with Icosahedral Symmetry

3-D Reconstruction: Algebra Incorporating Symmetry

$$
\left.\begin{array}{l}
A_{j}=\sum\left(G_{n}^{\prime}+G_{-n}^{\prime}\right) \cos \left(n \Phi_{j}\right) \tag{11}\\
B_{j}=\sum\left(G_{n}^{\prime}-G_{-n}^{\prime}\right) \sin \left(n \Phi_{j}\right)
\end{array}\right\}
$$

Since A_{j}, B_{j}, Φ_{j}, are known (recall, we have experimental $F(\Phi)$ values), it is necessary to solve for $\left(G_{n}^{\prime}+G_{-n}^{\prime}\right)$ and $\left(G_{n}^{\prime}-G_{-n}^{\prime}\right)$

Note: G_{n} are real for $n=$ even
G_{n} are imaginary for $n=$ odd

III.D. 5 3D Fourier Reconstruction Methods

III.D.5.a 3D Reconstruction of Objects with Icosahedral Symmetry

3-D Reconstruction: Algebra Incorporating Symmetry

$$
\left.\begin{array}{l}
A_{j}=\sum\left(G_{n}^{\prime}+G_{-n}^{\prime}\right) \cos \left(n \Phi_{j}\right) \tag{11}\\
B_{j}=\sum\left(G_{n}^{\prime}-G_{-n}^{\prime}\right) \sin \left(n \Phi_{j}\right)
\end{array}\right\}
$$

Since A_{j}, B_{j}, Φ_{j}, are known (recall, we have experimental $F(\Phi)$ values), it is necessary to solve for $\left(G_{n}^{\prime}+G_{-n}^{\prime}\right)$ and $\left(G_{n}^{\prime}-G_{-n}^{\prime}\right)$

Note: For the 3D reconstruction of icosahedral particles, the above summations are ONLY evaluated for terms for which $n=$ multiple of 5

III.D. 5 3D Fourier Reconstruction Methods

III.D.5.a 3D Reconstruction of Objects with Icosahedral Symmetry

3-D Reconstruction

Compute g_{n} from (2c):

$$
g_{n}(r, Z)=\int_{\text {transform }} G_{n}(R, Z) J_{n}(2 \pi r R) 2 \pi R d R
$$

(2c)

The 3-D density $\rho(r, \phi, z)$ is computed from (1):

$$
\begin{equation*}
\rho(r, \phi, z)=\sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} g_{n}(r, Z) e^{i n \phi} e^{2 \pi i z Z} d Z \tag{1}
\end{equation*}
$$

III.D. 5 3D Fourier Reconstruction Methods

III.D.5.a 3D Reconstruction of Objects with Icosahedral Symmetry

OK, let's get practical about icosahedral particle processing

2D

3D

III.D. 5 3D Fourier Reconstruction Methods

III.D.5.a 3D Reconstruction of Objects with Icosahedral Symmetry

OK, let's get practical about icosahedral particle processing

3D Reconstruction of Icosahedral Particles Outline

- Background
- References; examples; etc.
- Symmetry
- Icosahedral (532) point group symmetry
- Triangulation symmetry
- "Typical" procedure (flow chart)
- Digitization and boxing
- Image preprocessing / CTF estimation
- Initial particle orientation/origin search
- Orientation/origin refinement
- 3D reconstruction with CTF corrections
- Validation (resolution assessment)

- Current and future strategies

3D Reconstruction of Icosahedral Particles REFERENCES

Crowther, R. A., Amos, L. A., Finch, J. T., DeRosier, D. J. and Klug, A. (1970) Three dimensional reconstructions of spherical viruses by Fourier synthesis from electron micrographs. Nature 226:421-425

First 3D reconstructions of negatively-stained, spherical viruses:

- Human wart virus
- Tomato bushy stunt

3D Reconstruction of Icosahedral Particles REFERENCES

Crowther, R. A., DeRosier, D. J. and Klug, A. (1970) The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. Proc. Roy. Soc. Lond. A 317:319-340

Crowther, R. A. (1971) Procedures for three-dimensional reconstruction of spherical viruses by Fourier synthesis from electron micrographs.
Phil. Trans. R. Soc. Lond. B. 261:221-230
General principles of 3DR method

- Fourier-Bessel mathematics
- Common lines

3D Reconstruction of Icosahedral Particles REFERENCES

- Reference list available as handout
- For die-hards:

Baker, T. S., N. H. Olson, and S. D. Fuller (1999) Adding the third dimension to virus life cycles: Three-Dimensional reconstruction of icosahedral viruses from cryo-electron micrographs. Microbiol. Molec. Biol. Reviews 63:862-922

3D Reconstruction of Icosahedral Particles Outline

- Background
- References; examples; etc.
- Symmetry
- Icosahedral (532) point group symmetry
- Triangulation symmetry
- "Typical" procedure (flow chart)
- Digitization and boxing
- Image preprocessing / CTF estimation
- Initial particle orientation/origin search
- Orientation/origin refinement
- 3D reconstruction with CTF corrections
- Validation (resolution assessment)
- Current and future strategies

3D Reconstruction of Icosahedral Particles Symmetry
\Rightarrow 1. Icosahedral (532) point group symmetry
2. Triangulation symmetry

Regular Polyhedra
 (Platonic Solids)

There are just five platonic solids:
From equilateral triangles you can make:
with 3 faces at each vertex, a tetrahedron
with 4 faces at each vertex, an octahedron
with 5 faces at each vertex, an icosahedron

From squares you can make:
with 3 faces at each vertex, a cube

From pentagons you can make:
with 3 faces at each vertex, a dodecahedron

Icosahedral (532) Point Group Symmetry

Icosahedral (532) Point Group Symmetry

12 vertices (5-fold)
20 faces (3-fold)

Icosahedral (532) Point Group Symmetry

12 vertices (5-fold)
20 faces (3-fold)
30 edges (2-fold)

Icosahedron

Dodecahedron

Different shapes, but both have 532 symmetry

12 vertices, 20 faces, 30 edges
(6 5-folds, 10 3-folds, 15 2-folds)

20 vertices, 12 faces, 30 edges
(10 3-folds, 6 5-folds, 15 2-folds)

Asymmetric unit is $1 / 60^{\text {th }}$ of whole object
Object consists of 60 identical 'subunits' arranged with icosahedral symmetry

Icosahedral (532) Point Group Symmetry

From Eisenberg \& Crothers, Table 16-3, p. 767

Icosahedral (532) Point Group Symmetry

From Eisenberg \& Crothers, Table 16-3, p. 767

Icosahedral (532) Point Group Symmetry

From Eisenberg \& Crothers, Table 16-3, p. 767

Icosahedral (532) Point Group Symmetry

From Eisenberg \& Crothers, Table 16-3, p. 767

Icosahedral (532) Point Group Symmetry

30 dimers

20 trimers

12 pentamers

3D Reconstruction of Icosahedral Particles

 Symmetry1. Icosahedral (532) point group symmetry
2. Triangulation symmetry

Purely mathematical concept (concerns lattices)
Real objects (e.g. viruses) with 532 symmetry often consists of multiples of 60 'subunits'
'Subunits' arranged such that additional, local or pseudo-symmetries exist

3D Reconstruction of Icosahedral Particles

Triangulation Number

Key Concept:

- T symmetry is NOT incorporated into or enforced by the 3D reconstruction algorithms

Hence, T symmetry emerges as a result of a properly performed 3D reconstruction analysis

3D Reconstruction of Icosahedral Particles

Two Basic Assumptions:

- Specimen consists of stable particles with 'identical' structures (else averaging is invalid)
- Programs test for and assume presence of icosahedral (532) symmetry

3D Reconstruction of Icosahedral Particles Outline

- Background
- References; examples; etc.
- Symmetry
- Icosahedral (532) point group symmetry
- Triangulation symmetry
- "Typical" procedure (flow chart)
- Digitization and boxing
- Image preprocessing / CTF estimation
- Initial particle orientation/origin search
- Orientation/origin refinement
- 3D reconstruction with CTF corrections
- Validation (resolution assessment)

- Current and future strategies

3D Reconstruction of Icosahedral Particles

 Protocol
Electron Cryo-Microscopy

Sample : ~2-3 $\mu \mathrm{l}$ at 1-5 mg/ml
Specimen support: holey carbon film ($1-2 \mu \mathrm{~m}$)

3D Reconstruction of Icosahedral Particles Protocol

Electron Cryo-Microscopy

Sample : ~2-3 $\mu \mathrm{l}$ at 1-5 mg/ml
Specimen support: holey carbon film (1-2 $\mu \mathrm{m}$)

3D Reconstruction of Icosahedral Particles Protocol

Electron Cryo-Microscopy

Sample : ~2-3 $\mu \mathrm{l}$ at 1-5 $\mathrm{mg} / \mathrm{ml}$
Specimen support: holey carbon film (1-2 $\mu \mathrm{m}$)

3D Reconstruction of Icosahedral Particles Protocol

Electron Cryo-Microscopy

Sample : ~2-3 $\mu \mathrm{l}$ at 1-5 mg/ml
Specimen support: holey carbon film (1-2 $\mu \mathrm{m}$)
Microscope: 200-300 keV with FEG
Defocus range: 1-3 $\mu \mathrm{m}$ underfocus
Dose: 10-20 e-/Å2
Film: SO-163 (12 min, full strength)
Micrographs: 25-100
Particles: 103-104
Target resolution: 12-6 \AA

$$
0
$$

