III.D FOURIER IMAGE PROCESSING TECHNIQUES

III.D.4 2D and 1D Digital Fourier Reconstruction Methods

Introduction

Though we may ultimately be interested in learning the full 3-D structure of molecules imaged in the TEM, it can be quite informative to compute image reconstructions by Fourier methods in two dimensions, or sometimes even in one dimension (e.g. helices)

- A large number of biological macromolecules are planar (2-D) objects (e.g. membranes, cell walls, and some naturally occurring crystals)

- These make excellent subjects for Fourier image analysis in both 2D and 3D
III.D FOURIER IMAGE PROCESSING TECHNIQUES

III.D.4 2D and 1D Digital Fourier Reconstruction Methods

III.D.4.a 2D Fourier Averaging of Specimens with 2D Translational Symmetry

Protocol for Fourier averaging images of 2D crystals:

1) Image screening:
 - Visually inspect micrographs to toss obvious bad ones and use OD to select a subset of micrographs that give the highest quality optical diffraction patterns.
 - Highly coherent, crystalline areas give strong, sharp Bragg reflections to 'high' resolution (e.g. ~10-20Å for negatively stained crystals and possibly much higher for frozen-hydrated specimens, both recorded with minimum irradiation techniques)
 - Look for minimal radiation damage, astigmatism, and specimen drift or vibration and for 'best' defocus (i.e. giving the desired CTF characteristics) and highest resolution (most spots in all directions).
III.D.4 2D and 1D Digital Fourier Reconstruction Methods

III.D.4.a 2D Fourier Averaging of Specimens with 2D Translational Symmetry

Protocol for Fourier averaging images of 2D crystals:

1) Image screening

2) Digitize the micrograph:
 - Use sampling interval fine enough not to limit image resolution but not too fine or the digitized image will consist of many more pixels than is necessary and resulting in needless computations
III.D.4 2D and 1D Digital Fourier Reconstruction Methods

III.D.4.a 2D Fourier Averaging of Specimens with 2D Translational Symmetry

Protocol for Fourier averaging images of 2D crystals:

1) Image screening
2) Digitize the micrograph
3) Box the micrograph:
 - Window out the desired region of interest, making sure to exclude, if possible, as much of the unneeded portions of the digitized image as is practical
 - Easy to do with 'perfect' specimens like catalase crystals that grow large enough (several μm^2) to fill the entire field of view at 30,000 magnification or higher
III.D.4 2D and 1D Digital Fourier Reconstruction Methods

III.D.4.a 2D Fourier Averaging of Specimens with 2D Translational Symmetry

Protocol for Fourier averaging images of 2D crystals:

1) Image screening
2) Digitize the micrograph
3) Box the micrograph
4) Float the boxed image:
 - Subtract from every pixel within the image the average value of the pixels that form the perimeter of the box
III.D.4 2D and 1D Digital Fourier Reconstruction Methods

III.D.4.a 2D Fourier Averaging of Specimens with 2D Translational Symmetry

Protocol for Fourier averaging images of 2D crystals:

1) Image screening
2) Digitize the micrograph
3) Box the micrograph
4) Float the boxed image
5) Fourier transform the boxed, digitized image:
 - Images often padded with zeroes to give power of two image dimensions (e.g. 256^2 or 512^2 or 256×512 or 128×1024, etc.)
 - Only 'top half' of Fourier transform need be computed (i.e. $k \geq 0$) owing to Friedel's Law
 - Transform stored as structure factor A (real) and B (imaginary) parts
 - For a 512^2 image, resulting calculated and stored transform will consist of 256 rows, each with 512 complex numbers
III.D.4 2D and 1D Digital Fourier Reconstruction Methods

III.D.4.a 2D Fourier Averaging of Specimens with 2D Translational Symmetry

Protocol for Fourier averaging images of 2D crystals:

1) Image screening
2) Digitize the micrograph
3) Box the micrograph
4) Float the boxed image
5) Fourier transform the boxed, digitized image
6) Display and index the diffraction pattern:
III.D.4 2D and 1D Digital Fourier Reconstruction Methods

III.D.4.a 2D Fourier Averaging of Specimens with 2D Translational Symmetry

Protocol for Fourier averaging images of 2D crystals:

6) Display and index the diffraction pattern:

- Indexing could be performed on an optical diffraction pattern, however, the digital transform allows one to quantitatively check other properties of the specimen such as the presence of certain plane group symmetries

- Existence, \textit{e.g.}, of a three-fold axis of symmetry \textbf{at the unit cell origin}, for \textbf{noise free data}, will restrict the structure factor phases to be multiples of 120°

- The noisier the image the more the symmetry related structure factor phases will \textbf{deviate} from the 120° relationship
III.D.4 2D and 1D Digital Fourier Reconstruction Methods

III.D.4.a 2D Fourier Averaging of Specimens with 2D Translational Symmetry

Protocol for Fourier averaging images of 2D crystals:

6) Display and index the diffraction pattern

7) Filter or Fourier average the data:
 - **Pseudo-optical filtering**: filter masks computer generated with 'holes' of a specified size distributed on a lattice either covering the whole transform or limited at some specified upper resolution boundary
 - Fourier transform is multiplied by computer-generated mask and the resulting masked transform is back-transformed to generate the filtered image
III.D.4 2D and 1D Digital Fourier Reconstruction Methods

III.D.4.a 2D Fourier Averaging of Specimens with 2D Translational Symmetry

Protocol for Fourier averaging images of 2D crystals:

6) Display and index the diffraction pattern

7) Filter or Fourier average the data:
 - **Fourier Averaging:** To average **all** unit cells within the boxed area, Fourier data in the vicinity of each Bragg reflection are averaged or integrated together or are sampled to reduce the data to a single structure factor ($F_{h,k}$)
 - Equivalent to pseudo-filtering with mask hole radius = 0
 - Effect is to convolve the image with a lattice that includes every unit cell contained within the boxed region of the micrograph
 - Image is forced to obey perfect translational symmetry (p1 plane group)
 - The average structure of a single unit cell (all unit cells are identical in a Fourier average) is obtained by back transforming the structure factors (via Fourier synthesis)
III.D.4 2D and 1D Digital Fourier Reconstruction Methods

III.D.4.a 2D Fourier Averaging of Specimens with 2D Translational Symmetry

Protocol for Fourier averaging images of 2D crystals:

6) Display and index the diffraction pattern

7) Filter or Fourier average the data

8) Assess and apply additional symmetry if warranted:

 - Must be performed with due caution because it is very easy to apply *any* symmetry you want (right or wrong) with appropriate software

 - When you impose additional symmetry, the specimen will, of course, exhibit whatever symmetry has been applied
III.D.4 2D and 1D Digital Fourier Reconstruction Methods

III.D.4.a 2D Fourier Averaging of Specimens with 2D Translational Symmetry

Protocol for Fourier averaging images of 2D crystals:

1) Image screening
2) Digitize the micrograph
3) Box the micrograph
4) Float the boxed image
5) Fourier transform the boxed, digitized image
6) Display and index the diffraction pattern
7) Filter or Fourier average the data
8) Assess and apply additional symmetry if warranted
III.D.4 2D and 1D Digital Fourier Reconstruction Methods

III.D.4.a 2D Fourier Averaging of Specimens with 2D Translational Symmetry

Liver gap junction (negatively stained)

Enlarged view of boxed area
III.D.4 2D and 1D Digital Fourier Reconstruction Methods

III.D.4.a 2D Fourier Averaging of Specimens with 2D Translational Symmetry
III.D.4 2D and 1D Digital Fourier Reconstruction Methods

III.D.4.a 2D Fourier Averaging of Specimens with 2D Translational Symmetry
III.D.4 2D and 1D Digital Fourier Reconstruction Methods

III.D.4.a 2D Fourier Averaging of Specimens with 2D Translational Symmetry

h k
III.D.4 2D and 1D Digital Fourier Reconstruction Methods

III.D.4.a 2D Fourier Averaging of Specimens with 2D Translational Symmetry
III.D.4 2D and 1D Digital Fourier Reconstruction Methods

III.D.4.a 2D Fourier Averaging of Specimens with 2D Translational Symmetry
III.D.4 2D and 1D Digital Fourier Reconstruction Methods

III.D.4.a 2D Fourier Averaging of Specimens with 2D Translational Symmetry
III.D.4 2D and 1D Digital Fourier Reconstruction Methods

III.D.4.a 2D Fourier Averaging of Specimens with 2D Translational Symmetry

| Spot [0, 2] | Amplitudes (|F_{h,k}|) | Phases (α_{h,k} / 10) |
|-------------|--------------------------|------------------------|
| 5 10 7 11 5 4 10 5 6 | 3 30 24 31 36 31 31 6 23 | 3 10 9 3 8 1 13 9 |
| 6 6 21 9 3 8 1 13 9 | 33 18 10 9 3 8 1 13 9 | 9 9 9 10 |
| 4 14 8 8 5 3 1 5 1 | 29 3 5 7 5 29 14 16 25 | 28 1 4 1 13 14 4 21 20 |
| 9 16 15 7 8 11 7 4 5 | 7 26 3 17 23 25 4 24 16 | 7 26 3 17 23 25 4 24 16 |
| 9 14 19 10 85 18 25 14 10 | 1 20 30 15 23 31 9 25 33 | 1 20 30 15 23 31 9 25 33 |
| 10 10 13 15 46 27 15 18 7 | 30 34 35 7 18 20 32 2 | 30 34 35 7 18 20 32 2 |
| 8 6 7 7 12 6 14 10 6 | 10 2 31 20 22 24 34 25 16 | 10 2 31 20 22 24 34 25 16 |
| 9 5 6 6 21 16 8 3 6 | 29 17 26 25 13 12 17 19 32 | 29 17 26 25 13 12 17 19 32 |
| 6 3 5 7 15 13 4 13 5 | | |
III.D.4 2D and 1D Digital Fourier Reconstruction Methods

III.D.4.a 2D Fourier Averaging of Specimens with 2D Translational Symmetry

Amplitudes ($|F_{h,k}|$)

<table>
<thead>
<tr>
<th>5</th>
<th>10</th>
<th>7</th>
<th>11</th>
<th>2</th>
<th>4</th>
<th>10</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>6</td>
<td>21</td>
<td>9</td>
<td>3</td>
<td>8</td>
<td>1</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>8</td>
<td>8</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>15</td>
<td>7</td>
<td>8</td>
<td>11</td>
<td>7</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>14</td>
<td>19</td>
<td>10</td>
<td>85</td>
<td>18</td>
<td>25</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>13</td>
<td>15</td>
<td>46</td>
<td>27</td>
<td>15</td>
<td>18</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>12</td>
<td>6</td>
<td>14</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>21</td>
<td>16</td>
<td>8</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>10</td>
<td>13</td>
<td>4</td>
<td>13</td>
<td>5</td>
</tr>
</tbody>
</table>

Phases ($\alpha_{h,k}/10$)

<table>
<thead>
<tr>
<th>3</th>
<th>30</th>
<th>24</th>
<th>31</th>
<th>30</th>
<th>31</th>
<th>31</th>
<th>6</th>
<th>23</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td>31</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>13</td>
<td>14</td>
<td>2</td>
<td>21</td>
<td>20</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>13</td>
<td>4</td>
<td>2</td>
<td>21</td>
<td>20</td>
</tr>
<tr>
<td>9</td>
<td>26</td>
<td>3</td>
<td>17</td>
<td>23</td>
<td>25</td>
<td>4</td>
<td>24</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>30</td>
<td>15</td>
<td>23</td>
<td>31</td>
<td>9</td>
<td>25</td>
<td>33</td>
</tr>
<tr>
<td>30</td>
<td>34</td>
<td>35</td>
<td>7</td>
<td>7</td>
<td>18</td>
<td>20</td>
<td>32</td>
<td>2</td>
</tr>
<tr>
<td>29</td>
<td>30</td>
<td>23</td>
<td>13</td>
<td>22</td>
<td>24</td>
<td>34</td>
<td>25</td>
<td>16</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>21</td>
<td>20</td>
<td>22</td>
<td>24</td>
<td>34</td>
<td>25</td>
<td>16</td>
</tr>
</tbody>
</table>

Filtered

$D_{\text{HOLE}} = 4d^*$
III.D.4 2D and 1D Digital Fourier Reconstruction Methods

III.D.4.a 2D Fourier Averaging of Specimens with 2D Translational Symmetry

Amplitudes ($|F_{h,k}|$)

<table>
<thead>
<tr>
<th>Amplitudes</th>
<th>Phases ($\alpha_{h,k}/10$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 10 7 11 5 4 10 5 6</td>
<td>3 30 24 31 36 31 31 6 23</td>
</tr>
<tr>
<td>6 6 21 9 3 8 1 13 9</td>
<td>33 18 10 9 31 7 9 9 10</td>
</tr>
<tr>
<td>4 14 8 8 3 1 5 1</td>
<td>29 3 5 7 5 29 14 16 25</td>
</tr>
<tr>
<td>9 16 15 7 8 11 7 4 5</td>
<td>28 1 4 1 13 14 2 21 20</td>
</tr>
<tr>
<td>9 14 10 85 18 25 14 10</td>
<td>7 26 6 17 23 25 4 24 16</td>
</tr>
<tr>
<td>10 10 13 15 46 27 15 18 7</td>
<td>1 20 30 15 23 31 9 25 33</td>
</tr>
<tr>
<td>8 6 7 7 12 6 14 10 6</td>
<td>30 34 35 7 2 18 20 32 2</td>
</tr>
<tr>
<td>9 5 6 6 21 16 8 3 6</td>
<td>10 2 31 20 22 24 34 25 16</td>
</tr>
<tr>
<td>6 3 5 7 15 13 4 13 5</td>
<td>29 17 26 25 13 12 17 19 32</td>
</tr>
</tbody>
</table>

Filtered

$D_{\text{HOLE}} = 2d^*$
III.D.4 2D and 1D Digital Fourier Reconstruction Methods

III.D.4.a 2D Fourier Averaging of Specimens with 2D Translational Symmetry

Amplitudes ($|F_{h,k}|$)

| Spot [0, 2] |
|-------------|------
| Amplitudes | Phases ($\alpha_{h,k}/10$) |
| 5 10 7 11 5 4 10 5 6 | 3 30 24 31 36 31 31 6 23 |
| 6 6 21 9 3 8 1 13 9 | 33 18 10 9 31 7 9 9 10 |
| 4 14 8 8 1 3 1 5 1 | 29 3 5 7 5 29 14 16 25 |
| 9 16 15 7 8 11 7 4 5 | 28 1 4 1 13 14 21 20 |
| 9 14 10 85 18 25 14 10 | 7 26 9 17 23 25 9 24 16 |
| 10 10 13 15 46 27 15 18 7 | 1 20 30 15 23 31 9 25 33 |
| 8 6 7 7 12 8 14 10 6 | 30 34 35 7 9 18 20 32 2 |
| 9 5 6 6 21 16 8 3 6 | 10 2 31 20 22 24 34 25 16 |
| 6 3 5 7 15 13 4 13 5 | 29 17 26 25 13 12 17 19 32 |

Filtered
d_HOLE = 2d*

Soft edge
III.D FOURIER IMAGE PROCESSING TECHNIQUES

III.D.4 2D and 1D Digital Fourier Reconstruction Methods

III.D.4.b 2D Averaging of Objects with Point Group Symmetry

Specimens with only rotational symmetry (e.g. individual oligomeric proteins, spherical viruses, bacteriophage baseplates, etc.) are studied either by 2D rotational photographic-superposition, rotational filtering, or by 3D reconstruction techniques.

Digital rotational-filtering and photographic superposition techniques give qualitatively similar results.

Photographic methods should be used with caution - usually with specimens displaying obvious or well-established symmetry.
III.D.4 2D and 1D Digital Fourier Reconstruction Methods

III.D.4.b 2D Averaging of Objects with Point Group Symmetry

Rotational Photographic Superposition

From Horne & Markham, Fig. 8.1, p.413
III.D.4 2D and 1D Digital Fourier Reconstruction Methods

III.D.4.b 2D Averaging of Objects with Point Group Symmetry

3D reconstructions of **spherical viruses** usually calculated by means of Fourier-Bessel methods, which combine **several unique views** of the molecule.

For frozen-hydrated viruses studied in 3D at moderately high resolutions (< 10Å), the number of views combined often exceeds 5000 or more.

Though exceptions do exist, outside of spherical viruses, most 3D reconstructions of rotationally symmetric particles are **NOT** computed with the Fourier-Bessel approach.

In part this reflects the difficulty in reconstructing particles much smaller and of lower symmetry than spherical viruses.
III.D.4 2D and 1D Digital Fourier Reconstruction Methods

III.D.4.b 2D Averaging of Objects with Point Group Symmetry

OK, let’s talk about Rotational Filtering

This is 2D!!!
III.D.4 2D and 1D Digital Fourier Reconstruction Methods

III.D.4.b 2D Averaging of Objects with Point Group Symmetry

Protocol for Rotational Filtering

1) Screen and select images
2) Digitize the micrograph; box and float individual particles
3) Convert image from Cartesian \((x,y)\) to polar \((r,\phi)\) coordinates
4) Expand density, \(\rho(r,\phi)\), into a series of circular waves
5) Integrate each \(g_n(r)\) over the radius of the particle, \(a\), to obtain a measure of total \(n\)-fold rotational component of the image
6) Plot \(P_n\) as a function of \(n\) (rotational power spectrum)
7) Switch to Fourier space
8) Identify phase origin
9) Synthesize (reconstruct) filtered image
III.D.4 2D and 1D Digital Fourier Reconstruction Methods

III.D.4.b 2D Averaging of Objects with Point Group Symmetry

Protocol for Rotational Filtering

1) Screen and select images (mainly by eye)

2) Digitize the micrograph and box and float individual particles within circular mask windows
III.D.4 2D and 1D Digital Fourier Reconstruction Methods

III.D.4.b 2D Averaging of Objects with Point Group Symmetry
III.D.4 2D and 1D Digital Fourier Reconstruction Methods

III.D.4.b 2D Averaging of Objects with Point Group Symmetry
III.D.4 2D and 1D Digital Fourier Reconstruction Methods

III.D.4.b 2D Averaging of Objects with Point Group Symmetry

Protocol for Rotational Filtering

1) Screen and select images (mainly by eye)

2) Digitize the micrograph and box and float individual particles within circular mask windows

3) Convert image from \textbf{Cartesian} \((x,y)\) to \textbf{polar} \((r,\phi)\) coordinates
3) Convert image from **Cartesian** \((x,y)\) to **polar** \((r,\phi)\) coordinates.
III.D.4 2D and 1D Digital Fourier Reconstruction Methods

III.D.4.b 2D Averaging of Objects with Point Group Symmetry

3) Convert image from **Cartesian** \((x,y)\) to **polar** \((r,\phi)\) coordinates
Convert from Cartesian to Polar Sampling
Convert from Cartesian to Polar Sampling

In practice: sampling must be much finer than shown
One pixel or smaller in radial \textbf{and} azimuthal directions
Convert from Cartesian to Polar Sampling

Cartesian

Polar

r (radius)

φ (azimuthal angle)
Convert from Cartesian to Polar Sampling

2F

3F
Protocol for Rotational Filtering

1) Screen and select images (mainly by eye)

2) Digitize the micrograph and box and float individual particles within circular mask windows

3) Convert image from Cartesian \((x,y)\) to polar \((r,\phi)\) coordinates

4) Expand density, \(\rho(r,\phi)\), within the image into a series of circular waves (Fourier Analysis)

\[
\rho(r, \phi) = \sum_{n=-\infty}^{\infty} g_n(r) e^{in\phi}
\]

(1)
III.D.4 2D and 1D Digital Fourier Reconstruction Methods

III.D.4.b 2D Averaging of Objects with Point Group Symmetry

4) Expand density, \(\rho(r, \phi) \), within the image into a series of circular waves (Fourier Analysis)

\[
\rho(r, \phi) = \sum_{n=-\infty}^{\infty} g_n(r)e^{in\phi} \quad (1)
\]

\(g_n(r) \) represents the weight of the \(n \)-fold azimuthal component of the image at radius, \(r \)

\(\exp(in\phi) \), the phase term, positions the peak of each circular wave with respect to an origin (usually the \(x \) axis) so that all \(g_n(r) \) are properly summed
III.D.4 2D and 1D Digital Fourier Reconstruction Methods

III.D.4.b 2D Averaging of Objects with Point Group Symmetry

4) Expand density, $\rho(r,\phi)$, within the image into a series of **circular waves** (Fourier Analysis)

Decomposition of Rotationally Symmetric Object into Circular Waves

From Moody, Fig. 7.66, p.239
III.D.4 2D and 1D Digital Fourier Reconstruction Methods

III.D.4.b 2D Averaging of Objects with Point Group Symmetry

Protocol for Rotational Filtering

1) Screen and select images (mainly by eye)

2) Digitize the micrograph and box and float individual particles within circular mask windows

3) Convert image from Cartesian \((x,y)\) to polar \((r,\phi)\) coordinates

4) Expand density, \(\rho(r,\phi)\), within the image into a series of circular waves (Fourier Analysis)

5) Integrate each \(g_n(r)\) over the radius of the particle, \(a\), to obtain a measure of total \(n\)-fold rotational component of the image
III.D.4 2D and 1D Digital Fourier Reconstruction Methods

III.D.4.b 2D Averaging of Objects with Point Group Symmetry

5) Integrate each $g_n(r)$ over the radius of the particle, a, to obtain a measure of total n-fold rotational component of the image.

Power in the image is defined as:

$$P_n = \varepsilon_n \int_0^a |g_n(r)|^2 2\pi r dr,$$

$$\varepsilon_n = \begin{cases} 1 & \text{for } n = 0 \\ 2 & \text{for } n > 0 \end{cases}$$

Why $\varepsilon_n = 2$?

P_n has equal contributions from g_n and g_{-n} for $n > 0$.
Protocol for Rotational Filtering

1) Screen and select images (mainly by eye)
2) Digitize the micrograph and box and float individual particles within circular mask windows
3) Convert image from Cartesian \((x,y)\) to polar \((r,\phi)\) coordinates
4) Expand density, \(\rho(r,\phi)\), within the image into a series of circular waves (Fourier Analysis)
5) Integrate each \(g_n(r)\) over the radius of the particle, \(a\), to obtain a measure of total \(n\)-fold rotational component of the image
6) Plot \(P_n\) as a function of \(n\) to obtain rotational power spectrum
III.D.4 2D and 1D Digital Fourier Reconstruction Methods

III.D.4.b 2D Averaging of Objects with Point Group Symmetry

6) Plot P_n as a function of n to obtain rotational power spectrum

From Crowther & Amos, Plate I, p.126

From Crowther & Amos, Fig.2, p.126
III.D.4 2D and 1D Digital Fourier Reconstruction Methods

III.D.4.b 2D Averaging of Objects with Point Group Symmetry

6) Plot P_n as a function of n to obtain **rotational power spectrum**

Power spectrum is a **compact way** to represent the rotational symmetry components in the image

P_0 usually normalized to 1.0 and spectrum displayed with P_n on a logarithmic scale

From Crowther & Amos, Fig.2, p.126
Protocol for Rotational Filtering

1) Screen and select images (mainly by eye)
2) Digitize the micrograph and box and float individual particles within circular mask windows
3) Convert image from Cartesian \((x,y)\) to polar \((r,\phi)\) coordinates
4) Expand density, \(\rho(r,\phi)\), within the image into a series of circular waves (Fourier Analysis)
5) Integrate each \(g_n(r)\) over the radius of the particle, \(a\), to obtain a measure of total \(n\)-fold rotational component of the image
6) Plot \(P_n\) as a function of \(n\) to obtain rotational power spectrum
7) Switch to Fourier space
III.D.4 2D and 1D Digital Fourier Reconstruction Methods

III.D.4.b 2D Averaging of Objects with Point Group Symmetry

7) Switch to Fourier space

- As with other types of specimens, it is convenient with rotationally-symmetric specimens to perform computations in Fourier space rather than real space.

Recall: Polar Fourier transform coordinates are R and Φ

Polar Fourier transform is expanded in the following way:

$$F(R, \Phi) = \sum_{n=\pm\infty}^{a} \int_{0}^{2\pi} g_n(r) J_n(2\pi rR) e^{in(\Phi+\pi/2)} 2\pi r dr$$ \hspace{1cm} (3)
III.D.4 2D and 1D Digital Fourier Reconstruction Methods

III.D.4.b 2D Averaging of Objects with Point Group Symmetry

7) Switch to Fourier space

Polar Fourier transform expansion:

\[
F(R, \Phi) = \sum_{n=-\infty}^{+\infty} \int_{0}^{a} g_n(r) J_n(2\pi r R) e^{in(\Phi + \pi/2)} 2\pi r dr
\]

(3)

\(J_n(X)\) is a Bessel function of order \(n\)

Each \(J_n\) is a circularly-symmetric, oscillatory function
Bessel Functions

\(J_n(X) \) is a Bessel function of order \(n \)

Each \(J_n \) is a circularly-symmetric, oscillatory function

From Misell, Fig. 3.26, p.98

From www.efunda.com/math/bessel/besselJYPlot.cfm
Bessel Functions

$J_n(X)$ is a **Bessel function of order** n

Each J_n is a circularly-symmetric, oscillatory function

From Sherwood, Fig. 16.7, p.565
Bessel Functions

Note: First maximum of $J_n(X)$ for large n (i.e. $n > \sim 5$) appears at about $X = n+2$

From Sherwood, Fig. 16.7, p.565
Bessel Functions

Why should we care about Bessel functions?

From Sherwood, Fig. 16.7, p.565
Bessel Functions

Transform of a ring of radius a

Note: A ring has no azimuthal variation ($n = 0$)

Ring can be considered to be generated from a pair of points, separated by the distance $2a$, that are rotated through the angle π.
Bessel Functions

Transform of a ring of radius a

Note: A ring has no azimuthal variation ($n = 0$)

A single pair of points at opposite sides of a circle give rise to cosine fringes in Fourier space

When rotationally averaged, the fringes reinforce at the origin but tend to cancel away from the origin
Bessel Functions

Transform of a ring of radius \(a \): \(F(R) = 2\pi a J_0(2\pi aR) \)

When rotationally averaged, the fringes reinforce at the origin but tend to cancel away from the origin.

Gives rise to a Bessel function of zero order, \(J_0 \)

From Crowther (unpublished; 1973)
Bessel Functions

Transform of a ring of radius a: $F(R) = 2\pi a J_0(2\pi a R)$

What about a ring with an azimuthal variation, n?

$$F(R, \Phi) = i^n 2\pi a J_n(2\pi a R) e^{i n \Phi}$$

$$\rho(r,\phi) = \delta(r-a) \cos(2\phi)$$

$$F(R,\Phi) = i^2 2\pi a J_2(2\pi a R) \cos(2\Phi)$$

$$= -2\pi a J_2(2\pi a R) \cos(2\Phi)$$
Bessel Functions

\[F(R, \Phi) = i^n 2\pi a J_n(2\pi a R) e^{i n \Phi} \]

Circular Rings (Constant Radius but Differing Azimuthal Variation) and their Fourier-Bessel transforms

From Crowther (unpublished; 1973)
Bessel Functions

\[F(R, \Phi) = i^n 2\pi a J_n(2\pi aR) e^{i n \Phi} \]

Relationship between objects with \(n \)-fold sinusoidal variations in azimuth, \(g_n(r) \), and corresponding Fourier-Bessel transforms, \(G_n(R) \)

From Crowther (unpublished; 1973)
Bessel Functions

What happens when the object is slightly more complex, e.g. consisting of two rings \((r = a \text{ and } r = 2a)\), each with \(n\)-fold azimuthal variation?

\[J_n(z) \]

Gives rise to overlapping Bessels where multiple \(J_n\)'s superimpose and blur out.

There is no longer just one Bessel function as would occur if the object consisted simply of density at one radius.

Now, there are Bessels of a given order but of varying radius in transform space and they superimpose.
What happens when the object is slightly more complex, e.g. consisting of two rings \((r = a\) and \(r = 2a\)), each with \(n\)-fold azimuthal variation?

This situation clearly **contrasts** with that for 2-D crystals which give rise to **discrete** \((i.e.\) distinct and non-overlapping) Bragg spots in the Fourier transform.

Bessel Functions

From Crowther (unpublished; 1973)
Bessel Functions

What happens when the object is slightly more complex, e.g. consisting of two rings \((r = a \text{ and } r = 2a)\), each with \(n\)-fold azimuthal variation?

![Diagram showing Bessel functions and their behavior](image)

From Crowther (unpublished; 1973)

KEY CONCEPT:

Unlike with 2-D crystals, for single particles the **noise** and **signal** components are **NOT nicely separated** in the Fourier transform.

Nonetheless, working in Fourier space provides an objective means to determine the **presence and positions of symmetry axes**.
Bessel Functions

Transform of a ring of radius a, with n-fold variation:

$$F(R, \Phi) = i^n 2\pi a J_n(2\pi a R)e^{i n\Phi}$$

Since $i^n = e^{in(\pi/2)}$ \hspace{1cm} Hint: $e^{in(\pi/2)} = \cos(n \pi/2) + i \sin(n \pi/2)$

$$F(R, \Phi) = 2\pi a J_n(2\pi a R)e^{i n\Phi} e^{in(\pi/2)}$$

Can be rewritten as:

$$F(R, \Phi) = 2\pi a J_n(2\pi a R)e^{i n(\Phi+\pi/2)}$$
Bessel Functions

Transform of a ring of radius a, with n-fold variation:

$$F(R, \Phi) = i^n 2\pi a J_n (2\pi a R) e^{in\Phi}$$

Since $i^n = e^{in(\pi/2)}$

Hint: $e^{in(\pi/2)} = \cos(n \pi/2) + i \sin(n \pi/2)$

$$F(R, \Phi) = 2\pi a J_n (2\pi a R) e^{in\Phi} e^{in(\pi/2)}$$

Can be rewritten as:

$$F(R, \Phi) = 2\pi a J_n (2\pi a R) \left(e^{in(\Phi+\pi/2)} \right)$$

radial part of FT

angular part of FT
Bessel Functions

Transform of a ring of radius a, with n-fold variation:

$$F(R, \Phi) = 2\pi a J_n(2\pi a R) e^{in(\Phi + \pi/2)}$$

\textit{\textbf{\pi/2 factor}} arises because the \textbf{transform is rotated by \pi/2} (=90°) with respect to the direction of fringes in the object.

A \textbf{centrosymmetric} object (\textit{i.e.} n = even) gives rise to a \textbf{real} transform whereas a \textbf{non-centrosymmetric} object (\textit{i.e.} n = odd) gives an \textbf{imaginary} transform.
Bessel Functions

Transform of a ring of radius \(a\), with \(n\)-fold variation:

\[
F(R, \Phi) = 2\pi a J_n(2\pi a R) e^{in(\Phi + \pi/2)}
\]

The \(n\)-fold variation in the annular ring gives an angular frequency in the transform.

The \(2\pi a\) term at the beginning of the expression is a normalization factor (value of \(2\pi a J_0(X)\) at \(X=0\) is \(2\pi a\)).
Bessel Functions

Transform of a ring of radius a, with n-fold variation:

$$F(R, \Phi) = 2\pi a J_n(2\pi a R) e^{in(\Phi + \pi/2)}$$

radial part of FT

angular part of FT

Now let’s return to where we were when the subject of Bessel functions arose!!!
III.D.4 2D and 1D Digital Fourier Reconstruction Methods

III.D.4.b 2D Averaging of Objects with Point Group Symmetry

7) Switch to Fourier space

Polar Fourier transform expansion:

\[
F(R, \Phi) = \sum_{n=-\infty}^{+\infty} \int_{0}^{a} g_n(r) J_n(2\pi r R) e^{in(\Phi + \pi/2)} 2\pi r dr
\]

(3)

See how this compares with the transform of a highly simple object: a single ring of radius \(a\), with \(n\)-fold variation:

\[
F(R, \Phi) = \underbrace{2\pi a J_n(2\pi a R)e^{in(\Phi + \pi/2)}}_{\text{radial part of FT}} \quad \underbrace{e^{in(\Phi + \pi/2)}}_{\text{angular part of FT}}
\]
III.D.4.2 2D and 1D Digital Fourier Reconstruction Methods

III.D.4.b 2D Averaging of Objects with Point Group Symmetry

7) Switch to Fourier space

Polar Fourier transform expansion:

\[
F(R, \Phi) = \sum_{n=-\infty}^{+\infty} \int_{0}^{a} g_n(r) J_n(2\pi r R) e^{in(\Phi + \pi/2)} 2\pi r dr
\]

(3)

Recall: \(g_n(r)\) represents the weight of the \(n\)-fold variation at radius, \(r\), in the object

Each \(g_n\) is a complex number described by both a wave amplitude and a phase. This specifies at each radius where the strong peaks of density are for a particular angular variation.
III.D.4 2D and 1D Digital Fourier Reconstruction Methods

III.D.4.b 2D Averaging of Objects with Point Group Symmetry

7) Switch to **Fourier** space

Polar Fourier transform expansion:

\[
F(R, \Phi) = \sum_{n=-\infty}^{+\infty} \int_{0}^{a} g_n(r) J_n(2\pi r R) e^{in(\Phi + \pi l/2)} 2\pi r dr \tag{3}
\]

This can be rewritten as:

\[
F(R, \Phi) = \sum_{n=-\infty}^{+\infty} G_n(R) e^{in(\Phi + \pi l/2)} \tag{4}
\]
III.D.4 2D and 1D Digital Fourier Reconstruction Methods

III.D.4.b 2D Averaging of Objects with Point Group Symmetry

7) Switch to **Fourier** space

Polar Fourier transform expansion:

\[
F(R, \Phi) = \sum_{n=-\infty}^{n=+\infty} \int_{0}^{a} g_n(r) J_n(2\pi r R) e^{in(\Phi + \pi/2)} 2\pi r dr \tag{3}
\]

This can be rewritten as:

\[
F(R, \Phi) = \sum_{n=-\infty}^{n=+\infty} \left[G_n(R) e^{in(\Phi + \pi/2)} \right] \tag{4}
\]

\[\text{radial variation} \quad \text{angular variation}\]
III.D.4 2D and 1D Digital Fourier Reconstruction Methods

III.D.4.b 2D Averaging of Objects with Point Group Symmetry

7) Switch to **Fourier** space

\[
F(R, \Phi) = \sum_{n=-\infty}^{+\infty} G_n(R) e^{in(\Phi+\pi/2)}
\] \hspace{1cm} (4)

This expansion of the Fourier transform is analogous to the expansion of the polar image densities as given in equation (1):

\[
\rho(r, \phi) = \sum_{n=-\infty}^{+\infty} g_n(r) e^{in\phi}
\] \hspace{1cm} (1)

\(G_n(R)\) are the **coefficients** (weights) of each azimuthal component in the **Fourier transform**
III.D.4 2D and 1D Digital Fourier Reconstruction Methods

III.D.4.b 2D Averaging of Objects with Point Group Symmetry

7) Switch to Fourier space

\[F(R, \Phi) = \sum_{n=-\infty}^{n=+\infty} G_n(R) e^{in(\Phi+\pi/2)} \]
\[\rho(r, \phi) = \sum_{n=-\infty}^{n=+\infty} g_n(r) e^{in\phi} \]

The two sets of coefficients, \(G_n(R) \) and \(g_n(r) \), are connected by what is called the Fourier-Bessel transform.
III.D.4 2D and 1D Digital Fourier Reconstruction Methods

III.D.4.b 2D Averaging of Objects with Point Group Symmetry

7) Switch to \textbf{Fourier} space

The two sets of coefficients, $G_n(R)$ and $g_n(r)$, are connected by what is called the \textbf{Fourier-Bessel transform}

$$g_n(r) = \int_0^\infty G_n(R) J_n(2\pi R r) 2\pi R dR$$

Integral normally only evaluated out to some resolution limit (\textit{i.e.} $R < \infty$)

\textbf{Note:} When the above expression is evaluated computationally, the integral is expressed as a summation over discrete steps in R (reciprocal space)
III.D.4 2D and 1D Digital Fourier Reconstruction Methods

III.D.4.b 2D Averaging of Objects with Point Group Symmetry

7) Switch to Fourier space

The two sets of coefficients, $G_n(R)$ and $g_n(r)$, are connected by what is called the Fourier-Bessel transform

$$g_n(r) = \int_0^\infty G_n(R) J_n (2\pi R r) 2\pi R dR$$ \hspace{1cm} (5)

Inverse relationship also holds:

$$G_n(R) = \int_0^a g_n(r) J_n (2\pi r R) 2\pi r dr$$ \hspace{1cm} (6)

a is the radial limit of the object
III.D.4 2D and 1D Digital Fourier Reconstruction Methods

III.D.4.b 2D Averaging of Objects with Point Group Symmetry

7) Switch to Fourier space

The two sets of coefficients, \(G_n(R) \) and \(g_n(r) \), are connected by what is called the Fourier-Bessel transform

\[
g_n(r) = \int_0^\infty G_n(R) J_n(2\pi R r) 2\pi R dR
\]

(5)

Inverse relationship also holds:

\[
G_n(R) = \int_0^a g_n(r) J_n(2\pi r R) 2\pi r dr
\]

(6)

Integral computed as a summation over discrete steps in \(r \) (real space)
III.D.4 2D and 1D Digital Fourier Reconstruction Methods

III.D.4.b 2D Averaging of Objects with Point Group Symmetry

Protocol for Rotational Filtering

1) Screen and select images

2) Digitize the micrograph; box and float individual particles

3) Convert image from Cartesian \((x,y)\) to polar \((r,\phi)\) coordinates

4) Expand density, \(\rho(r,\phi)\), into a series of circular waves

5) Integrate each \(g_n(r)\) over the radius of the particle, \(a\), to obtain a measure of total \(n\)-fold rotational component of the image

6) Plot \(P_n\) as a function of \(n\) (rotational power spectrum)

7) Switch to Fourier space

8) Identify phase origin
III.D.4 2D and 1D Digital Fourier Reconstruction Methods

III.D.4.b 2D Averaging of Objects with Point Group Symmetry

Protocol for Rotational Filtering

8) Identify phase origin

Effect of Phase Origin

Essential that origin of polar coordinate system lie on the symmetry axis of the object

Origin established by boxing (center of window) becomes the phase origin of the computed Fourier transform

Origin point is then shifted computationally to give the best P_n for the assumed symmetry
III.D.4 2D and 1D Digital Fourier Reconstruction Methods

III.D.4.b 2D Averaging of Objects with Point Group Symmetry

Protocol for Rotational Filtering

8) Identify **phase origin**

Effect of Phase Origin

Origin point is then **shifted computationally** to give the best P_n for the assumed symmetry.

By **changing the assumed symmetry**, m, one gets a series of origins and computes for each of these separate origins a series of rotational power spectra.

These are compared to **look for the dominant symmetry**.
III.D.4 2D and 1D Digital Fourier Reconstruction Methods

III.D.4.b 2D Averaging of Objects with Point Group Symmetry

Protocol for Rotational Filtering

8) Identify phase origin

Effect of Phase Origin

From Crowther & Amos, Fig.1, p.125

From Crowther & Amos, Fig.4, p.127
III.D.4 2D and 1D Digital Fourier Reconstruction Methods

III.D.4.b 2D Averaging of Objects with Point Group Symmetry

Protocol for Rotational Filtering

1) Screen and select images
2) Digitize the micrograph; box and float individual particles
3) Convert image from Cartesian \((x,y)\) to polar \((r,\phi)\) coordinates
4) Expand density, \(\rho(r,\phi)\), into a series of circular waves
5) Integrate each \(g_n(r)\) over the radius of the particle, \(a\), to obtain a measure of total \(n\)-fold rotational component of the image
6) Plot \(P_n\) as a function of \(n\) (rotational power spectrum)
7) Switch to Fourier space
8) Identify phase origin
9) Synthesize (reconstruct) filtered image
III.D.4 2D and 1D Digital Fourier Reconstruction Methods

III.D.4.b 2D Averaging of Objects with Point Group Symmetry

Protocol for Rotational Filtering

9) Synthesize (reconstruct) filtered image

Examine the rotational power spectra computed from several different particle images to get an idea of the relative preservation of the particles

Those images which show the highest P_n are used to synthesize rotationally-filtered images
Protocol for Rotational Filtering

9) Synthesize (reconstruct) filtered image

Use equation (5) to convert each G_n to a corresponding g_n and only those g_n for which n is a multiple of m are computed, thereby omitting all other components considered to be noise.

\[
g_n(r) = \int_{0}^{\infty} G_n(R) J_n(2\pi Rr) 2\pi RdR
\]

(5)
III.D.4 2D and 1D Digital Fourier Reconstruction Methods

III.D.4.b 2D Averaging of Objects with Point Group Symmetry

Protocol for Rotational Filtering

9) Synthesize (reconstruct) filtered image

Noise may arise from several sources such as:

1) the particle may not be viewed directly along an axis of symmetry

2) the particle may be distorted or may be non-uniformly stained, shadowed, etc.

3) the other usual forms of noise (e.g. support film, electron optical effects, etc.) may be present
III.D.4 2D and 1D Digital Fourier Reconstruction Methods

III.D.4.b 2D Averaging of Objects with Point Group Symmetry

Protocol for Rotational Filtering

9) Synthesize (reconstruct) filtered image

The $G_n(R)$ are computed from the Fourier transform by the inverse of equation (4):

$$ F(R, \Phi) = \sum_{n=-\infty}^{n=+\infty} G_n(R) e^{in(\Phi+\pi/2)} $$

(4)

$$ G_n(R) = \frac{1}{2\pi} \int_{0}^{2\pi} F(R, \Phi) e^{-in(\Phi+\pi/2)} d\Phi $$

(7)
Protocol for Rotational Filtering

9) Synthesize (reconstruct) filtered image

Note: computation of $G_n(R)$ from $F(R, \Phi)$ (eqn. 7) allows the P_n to be computed **either** from densities directly (eqn. 2) or from the Fourier transform as follows:

$$P_n = \varepsilon_n \int_0^a |g_n(r)|^2 2\pi rdr,$$

$$\varepsilon_n = \begin{cases} 1 & \text{for } n = 0 \\ 2 & \text{for } n > 0 \end{cases}$$
III.D.4 2D and 1D Digital Fourier Reconstruction Methods

III.D.4.b 2D Averaging of Objects with Point Group Symmetry

Protocol for Rotational Filtering

9) Synthesize (reconstruct) filtered image

Once the $g_n(r)$ are computed, equation (1) is used to resynthesize the density function, $\rho(r,\phi)$.

$$\rho(r, \phi) = \sum_{n=-\infty}^{\infty} g_n (r) e^{in\phi} \quad (1)$$

This polar image is then reconverted back to a Cartesian format, $\rho(x,y)$, for visualization (e.g. in RobEM)