
III.C.6 Diffraction

III.C CRYSTALS, SYMMETRY AND DIFFRACTION

Diffraction methods provide a powerful 
way to study molecular structure

X-ray diffraction 

Neutron diffraction 

Electron diffraction

Optical diffraction

Computed diffraction



Understand the chemical properties of molecules by 
determining their atomic structure 

Types of chemical bonds (ionic, covalent, or hydrogen)

Bond lengths and angles

Van der Waals radii

Rotations about single bonds

Ultimate goal: 

III.C.6 Diffraction

etc.



In 1912 von Laue predicted that X-rays should diffract from 
crystals like light from a diffraction grating  (later verified 
experimentally by Friedrich and Knipping)

W. L. Bragg: developed concept of diffraction from crystal 
planes and that the diffraction pattern could be used to 
reveal atomic positions in crystals

Physical principles of X-ray diffraction form the fundamental 
basis of Fourier image processing techniques

Presently, only X-ray and neutron diffraction techniques 
are routinely capable of revealing the arrangement of 
atoms in molecular structures

III.C.6 Diffraction



- Occurs when an object scatters the incident radiation

- Radiation scattered from different portions of the object 
interfere both constructively and destructively, 
producing a diffraction pattern which can be recorded on a 
photographic emulsion

Recall:

Diffraction: non-linear propagation of electromagnetic 
radiation 

III.C.6 Diffraction
III.C.6.a Introduction to Diffraction Theory

Electrons (in a TEM) are scattered both by the electrons 
(inelastic scatter) and nuclei (elastic scatter) of specimen 
atoms
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III.C.6.a Introduction to Diffraction Theory

A characteristic of diffraction: (remember this!)

Each point in the diffraction pattern arises 
from interference of rays scattered from all 
irradiated portions of the object



- Involves measuring or calculating the structure factor
(F) at many or all points of the diffraction pattern

- Each F is described by two quantities, an amplitude and 
a phase

Structure determination by diffraction methods:
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III.C.6.a Introduction to Diffraction Theory

Amplitude:

Strength of interference at a particular point

Phase:

Relative time of arrival of scattered radiation (wave) at 
a particular point



Amplitude is proportional to the square root of the intensity
in the recorded pattern
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III.C.6.a Introduction to Diffraction Theory

Amplitude ∝ Intensity

Diffraction facts:

Photographic film does not record the scattered amplitude, 
but rather the intensity which is proportional to the 
amplitude squared: i.e. Intensity∝ Amplitude( )2



- Phase information is lost when the diffraction pattern is 
recorded

- Phases cannot be measured directly from X-ray diffraction 
photographs
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III.C.6.a Introduction to Diffraction Theory

The “Phase Problem”

- Necessitates use of e.g. heavy atom, isomorphous 
replacement, molecular replacement etc. methods

More Diffraction facts:

- Major concern of structure determination using X-ray 
crystallography



We can directly visualize objects in electron and light 
microscopes because electrons and visible photons 
scattered by specimens can be focused with lenses to 
form images

X-ray phases could be obtained if it were possible to
rediffract (focus) scattered X-rays with a lens to form an 
image
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In the absence of "noise", an image might be considered to 
contain structural information (amplitudes and phases) in 
directly interpretable form
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III.C.6.a Introduction to Diffraction Theory

Major advantage of image processing:

Provides an objective means to extract reliable structural 
information from noisy images
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III.C.6.b The Fourier Transform

Fourier 
Transforms
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III.C.6.b The Fourier Transform

Mathematically describes the distribution of amplitude and 
phase in different directions, for all possible directions of 
the beam incident on the object

Fourier transform of an object is a particular kind of weighted 
integral of the object

In one-dimension:

F(X) = ρ(x)e(2πixX )

−∞

∞

∫ dx
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III.C.6.b The Fourier Transform

The Fourier transform in 1-D:

F(X) = ρ(x)e(2πixX )

−∞

∞

∫ dx

F(X) = the scattering function (diffraction pattern) 

ρ(x) = the electron density function (object)

Integration is over all density values in the structure
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III.C.6.b The Fourier Transform

ρ(x): the object

ρ(x)

x
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For sampled (discrete) data:

F(X ) = ρ(x)e(2πixX )

x

∑

The Fourier transform in 1-D:

F(X) = ρ(x)e(2πixX )

−∞

∞

∫ dx
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KEY CONCEPTS:

- The Fourier transform is just a different way to represent
an object

- Any periodic object can be represented mathematically 
as a summation of sinusoidal waves (Fourier synthesis)

- Image formation is considered a double diffraction process

III.C CRYSTALS, SYMMETRY AND DIFFRACTION
III.C.6 Diffraction

- Diffraction methods provide a powerful means to study 
and determine structure

- First goal of diffraction methods is to determine structure 
factor amplitudes and phases; from these we can 
reconstruct structure



And some more KEY CONCEPTS:

- Concepts of convolution and multiplication (sampling) 
help us understand fundamental properties of Fourier 
transforms
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III.C.6 Diffraction

- Bragg’s Law: visualizes diffraction as arising from reflection
of radiation from planes in crystals

- Structure factors are complex numbers
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For sampled (discrete) data:

F(X ) = ρ(x)e(2πixX )

x

∑

In one-dimension:

F(X) = ρ(x)e(2πixX )

−∞

∞

∫ dx
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Shorthand Notations:

F = Fourier transform of ρ

T = Forward Fourier transform operation

F = T(ρ)
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Inverse relationship: (property of FTs)

ρ(x) = F(X)e(−2πixX )

−∞

∞

∫ dX

F(X) is the forward transform of ρ(x)

thus ρ is the inverse transform of F

F(X) = ρ(x)e(2πixX )

−∞

∞

∫ dx
Recall:
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III.C.6.b The Fourier Transform

Inverse relationship: (property of FTs)

ρ is the inverse transform of F

ρ(x) = F(X)e(−2πixX )

−∞

∞

∫ dX

ρ = T-1(F) = T-1(T(ρ)) 
T-1 = inverse (reverse, back) Fourier transform operation

In shorthand notation:
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III.C.6.b The Fourier Transform

Inversion theorem:

The Fourier transform of the Fourier transform 
of an object is the original object

Theorem is analogous to Abbe's treatment of 
image formation which is considered to be a 
double-diffraction process

We will return to this idea a bit later…
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Any periodic function may be mathematically represented 
by a summation of a series of sinusoidal waves
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Any periodic function may be mathematically represented 
by a summation of a series of sinusoidal waves

In one-dimension, the Fourier synthesis can be expressed:

ρ(x) = An cos(2πnx /a)
n=−∞

∞

∑
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ρ(x) = An cos(2πnx /a)
n=−∞

∞

∑

a

A1
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ρ(x) = An cos(2πnx /a)
n=−∞

∞

∑

a

A2
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ρ(x) = 1-D density function (object)

x = coordinate of a point in the object

a = repeat distance of 1-D periodic object

An = Fourier coefficient (amplitude term) for wave number n

n = wave number (frequency) or cycles per repeat distance a

(2πnx/a) = phase term (position of wave with respect to a fixed origin 
point in the repeating structure)

ρ(x) = An cos(2πnx /a)
n=−∞

∞

∑



x
0.0 1.0 2.0 3.0

ρ(x)

III.C.6 Diffraction
III.C.6.c Fourier Synthesis

ρ(x) = An cos(2πnx / a)
n=−∞

∞

∑
ρ(x) = object

x = coordinate of point in object

a = repeat distance of 1-D periodic object

a

From Eisenberg & Crothers, Fig. 17-14, p.828

x = 0.4



x
0.0 1.0 2.0 3.0

ρ(x)
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ρ(x) = An cos(2πnx / a)
n=−∞

∞

∑
ρ(x) = object

a = repeat distance of 1-D periodic object

a

From Eisenberg & Crothers, Fig. 17-14, p.828

x = 0.6

x = coordinate of point in object



x
0.0 1.0 2.0 3.0

ρ(x)
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ρ(x) = An cos(2πnx / a)
n=−∞

∞

∑
ρ(x) = object

a = repeat distance of 1-D periodic object

From Eisenberg & Crothers, Fig. 17-14, p.828

x = 1.6

a

x = coordinate of point in object



x
0.0 1.0 2.0 3.0

ρ(x)

III.C.6 Diffraction
III.C.6.c Fourier Synthesis

ρ(x) = An cos(2πnx / a)
n=−∞

∞

∑
ρ(x) = object

a = repeat distance of 1-D periodic object

From Eisenberg & Crothers, Fig. 17-14, p.828

x = 2.6

a

x = coordinate of point in object
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ρ(x) = An cos(2πnx / a)
n=−∞

∞

∑
An = Fourier coefficient (amplitude term) 

for wave number n

n = wave number or cycles per repeat 
distance a

(2πnx/a) = phase term (position of wave with 
respect to origin point)

From Eisenberg & Crothers, Fig. 17-14, p.828
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Fourier Synthesis:
- Mathematical combination of the waves to produce 

the periodic function 

- Opposite process

Fourier Analysis:

- Decomposition of the periodic function into its 
component waves

- Example: analyzing the sound wave harmonics of a 
musical instrument
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Analogy between Music and Structure

tone = Σ harmonics

structure = Σ structure factors



Fourier Synthesis of 
1-D Periodic Object

From Eisenberg & Crothers, Fig. 17-14, p.828
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From Eisenberg & Crothers, Fig. 17-15, p.829

Superposition of Waves to Represent 1-D “Crystal”



From Eisenberg & Crothers, Fig. 17-15, p.829

Superposition of Waves to Represent 1-D “Crystal”



Summation of 2D Waves to Produce 2D “Electron Density”

From Eisenberg & Crothers, Fig. 17-15c, p.830
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REVIEW

III.C CRYSTALS, SYMMETRY AND DIFFRACTION

- Involves measuring or calculating the structure factor
(F) at many or all points of the diffraction pattern

- Each F is described by an amplitude and a phase

Structure determination by diffraction methods:

Amplitude:

Strength of interference at a particular point

Phase:

Relative time of arrival of scattered radiation (wave) at 
a particular point



The Fourier Transform

Mathematically describes the distribution of amplitude and 
phase in different directions, for all possible directions of 
the beam incident on the object

Fourier transform of an object is a particular kind of weighted 
integral of the object

In one-dimension:

F(X) = ρ(x)e(2πixX )

−∞

∞

∫ dx

REVIEW
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The Fourier transform in 1-D:

F(X) = ρ(x)e(2πixX )

−∞

∞

∫ dx

F(X) = the scattering function (diffraction pattern) 

ρ(x) = the electron density function (object)

Integration is over all density values in the structure

REVIEW

III.C CRYSTALS, SYMMETRY AND DIFFRACTION

The Fourier Transform



For sampled (discrete) data:

F(X ) = ρ(x)e(2πixX )

x

∑

The Fourier transform in 1-D:

F(X) = ρ(x)e(2πixX )

−∞

∞

∫ dx

REVIEW
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The Fourier Transform



- The Fourier transform is just a different way to represent
an object

- Goal of diffraction methods: determine structure factor 
amplitudes and phases; from these we can reconstruct
structure

REVIEW

III.C CRYSTALS, SYMMETRY AND DIFFRACTION

The Fourier Transform



Inverse relationship: (property of FTs)

ρ(x) = F(X)e(−2πixX )

−∞

∞

∫ dX

F(X) is the forward transform of ρ(x)

thus ρ is the inverse transform of F

F(X) = ρ(x)e(2πixX )

−∞

∞

∫ dx

REVIEW
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ρ is the inverse transform of F

ρ(x) = F(X)e(−2πixX )

−∞

∞

∫ dX

ρ = T-1(F) = T-1(T(ρ)) 

Inverse relationship: (property of FTs)

REVIEW
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- Any periodic object can be represented mathematically 
as a summation of sinusoidal waves

REVIEW

III.C CRYSTALS, SYMMETRY AND DIFFRACTION

Fourier Synthesis

a a a a a

In one-dimension, the Fourier synthesis can be expressed:

ρ(x) = An cos(2πnx /a)
n=−∞

∞

∑



REVIEW

III.C CRYSTALS, SYMMETRY AND DIFFRACTION

Fourier Synthesis

From Eisenberg & Crothers, Fig. 17-14, p.828

ρ(x) = An cos(2πnx /a)
n=−∞

∞

∑



Fourier Synthesis:
- Mathematical combination of the waves to produce 

the periodic function 

- Opposite process

Fourier Analysis:

- Decomposition of the periodic function into its 
component waves

REVIEW
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From Eisenberg & Crothers, Fig. 17-15, p.829

REVIEW
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OK, that’s 
enough review

REVIEW

III.C CRYSTALS, SYMMETRY AND DIFFRACTION



III.C.6 Diffraction
III.C.6.d Image Formation as a Double Diffraction Process

According to Abbe's theory, image formation is a two-
stage, double-diffraction process

An image is the diffraction pattern of the diffraction 
pattern of an object

object lens diffraction
plane

image
plane

radiation



object lens diffraction
plane

image
plane

radiation

III.C.6 Diffraction
III.C.6.d Image Formation as a Double Diffraction Process

1st stage of image formation
Collimated (parallel) beam of rays incident on the object is scattered and the 

interference pattern (Fraunhofer diffraction pattern) is brought to focus at 
the back focal plane of the lens  



III.C.6 Diffraction
III.C.6.d Image Formation as a Double Diffraction Process

1st stage of image formation

Intensity distribution of the recorded diffraction pattern of an object is
proportional to the square of the Fourier transform of the object

Terms “transform” and “diffraction pattern” are often used interchangeably, but 
strictly speaking they are not equivalent

object lens diffraction
plane

image
plane

radiation

1st stage sometimes referred to as the forward Fourier transformation

FT
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III.C.6.d Image Formation as a Double Diffraction Process

If remove lens, no image forms, but instead Fresnel diffraction patterns 
form at finite distances from the object and the Fraunhofer diffraction 
pattern forms at infinity (large distance relative to the object size or wavelength 
of radiation used)

A lens (essential for image formation) focuses the diffraction pattern at a 
finite distance from the object (at back focal plane of lens)

In X-ray diffraction experiments, there is no lens to focus the X-rays

object lens diffraction
plane

image
plane

radiation

FT
1st stage of image formation
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III.C.6.d Image Formation as a Double Diffraction Process

Occurs when the scattered radiation passes beyond the back focal plane of 
the lens and interferes (recombines) to form an image  

2nd stage of image formation

object lens diffraction
plane

image
plane

radiation

Recall: Image cannot exactly represent the object because some scattered 
rays never enter the lens and cannot be focused at the image plane

FT

Called back or inverse Fourier transformation stage

FT #2
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III.C.6.d Image Formation as a Double Diffraction Process

Image formation analogous to:

object lens diffraction
plane

image
plane

radiation

FT

Fourier analysis in first stage

Analysis FT #2

Fourier synthesis in second stage

Synthesis



III.C.6 Diffraction
III.C.6.d Image Formation as a Double Diffraction Process

- Formation of diffraction pattern in 1st stage reveals structural information in a 
straightforward manner and conveniently and objectively separates most 
of the signal and noise components in the image

Fourier image analysis is a powerful method for analyzing a wide variety 
of periodic specimens because:

- Separates processing of electron micrograph images into two stages

-Transform may then be manipulated and subsequently back-transformed in 
2nd stage to produce a noise-filtered, reconstructed image

object lens diffraction
plane

image
plane

radiation

FT FT #2



Bragg’s Law
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III.C.6.e Bragg Diffraction



Bragg’s Law

From Vainshtein, Fig. 4.2, p.224

III.C.6 Diffraction
III.C.6.e Bragg Diffraction

nλ = 2dhkl sinθ? ? ?



III.C.6 Diffraction
III.C.6.e Bragg Diffraction

Diffraction can be conceptualized as arising from the
reflection of radiation from planes of electron density in 
the 3D crystal (or lines in a 2D crystal)

These planes are imaginary parallel planes within crystals 

Each set of planes is identified by three Miller indices, 
hkl, which are the reciprocals of the intercepts, in units of 
cell edge lengths, that the plane makes with the axes of 
the unit cell



Miller Indices of Lattice Planes in a Crystal

From Eisenberg & Crothers, Fig. 17-7, p.811

III.C.6 Diffraction
III.C.6.e Bragg Diffraction

hk(2-D), hkl(3-D): 
The reciprocals of the intercepts, 

in units of cell edge lengths, 
that the plane/line makes with 
the axes of the unit cell
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III.C.6.e Bragg Diffraction

Diffraction from the hkl set of planes, separated a 
distance dhkl, only occurs for certain orientations of 
the incident radiation according to the Bragg relation: 

nλ = 2dhkl sinθ? ? ?

n = integer

λ = wavelength of incident radiation

dhkl = crystal lattice spacing between the [hkl] set of 
crystal planes

θhkl = angle of incidence and also of reflection



Bragg’s Law

From Vainshtein, Fig. 4.2, p.224
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nλ = 2dhkl sinθ? ? ?

dsinθdsinθ
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Intensity of each hkl reflection is proportional to the 
distribution of electron density in the hkl planes

In some planes the density may be evenly distributed
and the corresponding reflection will be relatively weak

In others, where the density is concentrated in one region 
between the planes, the corresponding reflection will be 
strong



III.C.6 Diffraction
III.C.6.e Bragg Diffraction

Intensity of each hkl reflection is proportional to the 
distribution of electron density in the hkl planes

In some planes the density may be evenly distributed
and the corresponding reflection will be relatively weak

In others, where the density is concentrated in one region 
between the planes, the corresponding reflection will be 
strong



2D Crystal of Hands and Corresponding Reciprocal Lattice

III.C.6 Diffraction
III.C.6.e Bragg Diffraction

Two Bragg-type “planes” (lines 
here in 2-D) are depicted in this 
2-D crystal of hands  

[1,2] and [2,3] are shown



2D Crystal of Hands and Corresponding Reciprocal Lattice
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real space reciprocal space

Origin of FT

d*[1,2]

d[1,2]



2D Crystal of Hands and Corresponding Reciprocal Lattice
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real space reciprocal space

Origin of FT

d*[2,3]

d[2,3]
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III.C.6.e Bragg Diffraction

Density that lies between the dashed lines diffract at the reciprocal lattice point 
labeled [1,2] (and also its Friedel mate, [-1,-2], not shown)

Relative to the transform origin (where θhkl = 0°, which corresponds to direction of 
unscattered radiation), the reciprocal lattice point appears in a direction
normal to the set of lines

Spacing (perpendicular distance) between the lines is inversely proportional to 
the distance of the [1,2] reciprocal lattice point from the origin

real space reciprocal space
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For 2D, periodic structures, each Friedel pair of spots arises from a set 
of fringes (sinusoidal density waves) of particular spacing (frequency) 
and orientation in the crystal

The so-called Miller index of each spot corresponds to the two wave 
numbers (h and k) which describe the number of wave cycles per 
repeat in the a and b directions.

For diffraction from 3D crystals, 
the Miller index of each spot is 
assigned three wave numbers 
(h,k,l) corresponding to the 
number of wave cycles per 
repeat in the three unit cell 
directions (a,b,c)
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Each spot or reflection in the diffraction pattern may be
mathematically represented in real space as a plane 
wave whose amplitude is proportional to the square root of 
the spot intensity and whose phase is measured relative to a 
particular origin point in the crystal (e.g. the unit cell origin).  

When the amplitudes and phases (structure factors, Fhkl) of 
all spots in the 3D transform are known, the corresponding 
real space density waves can be mathematically summed 
(Fourier synthesis) to reconstruct the 3D object density 

ρ(x) = An cos(2πnx /a)
n=−∞

∞

∑In 1D: 



KEY CONCEPTS:
- Any periodic object can be represented mathematically 

as a summation of sinusoidal waves (Fourier synthesis)

- Image formation is considered a double diffraction process

III.C CRYSTALS, SYMMETRY AND DIFFRACTION
III.C.6 Diffraction

- Concepts of convolution and multiplication (sampling) 
help us understand fundamental properties of Fourier 
transforms

- Bragg’s Law: visualizes diffraction as arising from reflection
of radiation from planes in crystals

- Structure factors are complex numbers



Structure 
Factor
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III.C.6.f Structure Factor



III.C.6 Diffraction
III.C.6.f Structure Factor

The structure factor describes the scattering from all
atoms of the unit cell for a particular Bragg reflection

Each diffracted ray, or reflection, is described by one
structure factor, Fhkl

Fhkl is a complex number whose magnitude (amplitude) is 
proportional to the square root of the intensity of the hkl 
reflection

Each structure factor may be regarded as a sum of the 
contributions of the radiation scattered in the same 
direction from all atoms within the unit cell
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III.C.6.f Structure Factor

For an object with n atoms, the structure factor equation is:

Fhkl = f j exp 2πi hx j + ky j + lz j( )[ ]
j =1

n

∑

fj = atomic scattering factor for atom j
= ratio of       amplitude scattered by the atom

amplitude scattered by a single electron
= atomic number at zero scattering angle
< atomic number at larger scattering angles

hkl = particular set of diffracting planes
xj,yj,zj = fractional unit cell coordinates for atom j in the unit cell
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Recall: eiθ = cosθ + isinθ, so above can be rewritten:

Fhkl = f j cos 2π hx j + ky j + lz j( )[ ]+ i sin 2π hx j + kyj + lz j( )[ ]{ }
j =1

n

∑

= f j cos 2π hxj + ky j + lz j( )[ ]
j =1

n

∑ + i f j sin 2π hxj + ky j + lz j( )[ ]
j =1

n

∑

= Ahkl + iBhkl

Thus, Fhkl is a complex quantity, with real (Ahkl) and 
imaginary (Bhkl) parts

Fhkl = f j exp 2πi hx j + ky j + lz j( )[ ]
j =1

n

∑
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Argand Diagram

A convenient way to depict Fhkl 

Fhkl is plotted as a vector quantity with:

horizontal axis = real axis
vertical axis = imaginary axis

Bhkl

|F hkl 
|

i

real

Fhkl 

Fhkl = vector sum of Ahkl (real component) and Bhkl (imaginary component)

αhkl

Vector Fhkl makes an angle αhkl
with respect to real axis

Magnitudes of vectors Ahkl and Bhkl are:  |Fhkl|cos(αhkl) and |Fhkl|sin(αhkl)

Ahkl
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Structure factor amplitude (modulus or magnitude of Fhkl): Fhkl

Fhkl = [(Ahkl)2 + (Bhkl)2]1/2

Since Fhkl = Ahkl + iBhkl

= Fhklcos(αhkl) + Fhklisin(αhkl)

= Fhklexp(iαhkl)

Structure factor phase: αhkl

real                   imaginary
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Reemphasizes a property of Fourier transforms: Every 
point in the object contributes to every point in the 
diffraction pattern

For a 3D structure with continuous density, ρ(xyz), the 
structure factor equation becomes:

Integration is over the entire unit cell volume, V.  

Fhkl = V ∫∫∫ρ(xyz)exp(2πi [hx+ky+lz]) dx dy dz
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- Convolution
- Multiplication

III.C CRYSTALS, SYMMETRY AND DIFFRACTION
III.C.6 Diffraction

III.C.6.g Convolution and Multiplication



III.C.6 Diffraction
III.C.6.g Convolution and Multiplication

These concepts provide a fundamental basis for under-
standing diffraction from crystalline objects

According to Holmes and Blow (1965), convolution of two 
functions can be described in the following way:

"Set down the origin of the first function in every 
possible position of the second, multiply the value 
of the first function in each position by the value of the 
second at that point and take the sum of all such 
possible operations."

Well, sort of…especially if one function is “simple”

Sounds simple enough…right? 
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Mathematical expression for convolution:

This is known as the convolution of f(x) and g(x), and 
may be written in shorter form as:

c(u) = f (x)g(u − x)dx
−∞

∞

∫

c(u) = f (x)∗ g(x)



Convolution of  f(x), an array of δ functions, with g(x), an 
arbitrary function 

From Sherwood, Fig. 5.19, p.173

III.C.6 Diffraction
III.C.6.g Convolution and Multiplication
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0 0 5 0 0 0 0 0 5 0 0 0 0 0 5 0 0

f(x)

0 0 4 2 1 0

g(x)

g(-x)

0 1 2 4 0 0

c(u) = f (x)∗ g(x) c(u) = f ( x)g(u − x)dx
−∞

∞

∫

c(u)



III.C.6 Diffraction
III.C.6.g Convolution and Multiplication

0 0 5 0 0 0 0 0 5 0 0 0 0 0 5 0 0

f(x)

0 0 4 2 1 0

g(x)

g(-x)

0 1 2 4 0 0

c(u) = f (x)∗ g(x) c(u) = f ( x)g(u − x)dx
−∞

∞

∫

c(u)

0
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0 0 5 0 0 0 0 0 5 0 0 0 0 0 5 0 0 0 0 4 2 1 0

g(x)

0 1 2 4 0 0

c(u) = f (x)∗ g(x) c(u) = f ( x)g(u − x)dx
−∞

∞

∫

00

f(x)

g(-x)

c(u)
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0 0 5 0 0 0 0 0 5 0 0 0 0 0 5 0 0 0 0 4 2 1 0

g(x)

0 1 2 4 0 0

c(u) = f (x)∗ g(x) c(u) = f ( x)g(u − x)dx
−∞

∞

∫

0 00

f(x)

g(-x)

c(u)
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0 0 5 0 0 0 0 0 5 0 0 0 0 0 5 0 0 0 0 4 2 1 0

g(x)

0 1 2 4 0 0

c(u) = f (x)∗ g(x) c(u) = f ( x)g(u − x)dx
−∞

∞

∫

0 0 00

f(x)

g(-x)

c(u)
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0 0 5 0 0 0 0 0 5 0 0 0 0 0 5 0 0 0 0 4 2 1 0

g(x)

0 1 2 4 0 0

c(u) = f ( x)g(u − x)dx
−∞

∞

∫

0 0 0 200

c(u) = f (x)∗ g(x)

f(x)

g(-x)

c(u)
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0 0 5 0 0 0 0 0 5 0 0 0 0 0 5 0 0 0 0 4 2 1 0

g(x)

0 1 2 4 0 0

c(u) = f ( x)g(u − x)dx
−∞

∞

∫

0 0 0 20 100

c(u) = f (x)∗ g(x)

f(x)

g(-x)

c(u)
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0 0 5 0 0 0 0 0 5 0 0 0 0 0 5 0 0 0 0 4 2 1 0

g(x)

0 1 2 4 0 0

c(u) = f ( x)g(u − x)dx
−∞

∞

∫

0 0 0 20 10 50

c(u) = f (x)∗ g(x)

f(x)

g(-x)

c(u)
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0 0 5 0 0 0 0 0 5 0 0 0 0 0 5 0 0 0 0 4 2 1 0

g(x)

0 1 2 4 0 0

c(u) = f ( x)g(u − x)dx
−∞

∞

∫

0 0 0 20 10 5 00

c(u) = f (x)∗ g(x)

f(x)

g(-x)

c(u)
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0 0 5 0 0 0 0 0 5 0 0 0 0 0 5 0 0 0 0 4 2 1 0

g(x)

0 1 2 4 0 0

c(u) = f ( x)g(u − x)dx
−∞

∞

∫

0 0 0 20 10 5 0 00

c(u) = f (x)∗ g(x)

f(x)

g(-x)

c(u)
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0 0 5 0 0 0 0 0 5 0 0 0 0 0 5 0 0 0 0 4 2 1 0

g(x)

0 1 2 4 0 0

c(u) = f ( x)g(u − x)dx
−∞

∞

∫

0 0 0 20 10 5 0 0 00

c(u) = f (x)∗ g(x)

f(x)

g(-x)

c(u)
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0 0 5 0 0 0 0 0 5 0 0 0 0 0 5 0 0 0 0 4 2 1 0

g(x)

0 1 2 4 0 0

c(u) = f ( x)g(u − x)dx
−∞

∞

∫

0 0 0 20 10 5 0 0 0 200

c(u) = f (x)∗ g(x)

f(x)

g(-x)

c(u)
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0 0 5 0 0 0 0 0 5 0 0 0 0 0 5 0 0 0 0 4 2 1 0

g(x)

0 1 2 4 0 0

c(u) = f ( x)g(u − x)dx
−∞

∞

∫

0 0 0 20 10 5 0 0 0 20 100

c(u) = f (x)∗ g(x)

f(x)

g(-x)

c(u)
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0 0 5 0 0 0 0 0 5 0 0 0 0 0 5 0 0 0 0 4 2 1 0

g(x)

0 1 2 4 0 0

c(u) = f ( x)g(u − x)dx
−∞

∞

∫

0 0 0 20 10 5 0 0 0 20 10 50

c(u) = f (x)∗ g(x)

f(x)

g(-x)

c(u)
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0 0 5 0 0 0 0 0 5 0 0 0 0 0 5 0 0 0 0 4 2 1 0

g(x)

0 1 2 4 0 0

c(u) = f ( x)g(u − x)dx
−∞

∞

∫

0 0 0 20 10 5 0 0 0 20 10 5 0 0 00

c(u) = f (x)∗ g(x)

f(x)

g(-x)

c(u)
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0 0 5 0 0 0 0 0 5 0 0 0 0 0 5 0 0 0 0 4 2 1 0

g(x)

0 1 2 4 0 0

c(u) = f ( x)g(u − x)dx
−∞

∞

∫

0 0 0 20 10 5 0 0 0 20 10 5 0 0 0 20 10 5 0 00 0

c(u) = f (x)∗ g(x)

f(x)

g(-x)

c(u)
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0 0 5 0 0 0 0 0 5 0 0 0 0 0 5 0 0

f(x)

0 0 4 2 1 0

g(x)

g(-x)

0 1 2 4 0 0

c(u) = f (x)∗ g(x) c(u) = f ( x)g(u − x)dx
−∞

∞

∫

c(u)

0
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0 5 5 0 0 0 0 4 5 4 0 0 0 0 5 0 0 0 0 4 2 1 0

g(x)

0 1 2 4 0 0

c(u) = f ( x)g(u − x)dx
−∞

∞

∫

0

c(u) = f (x)∗ g(x)

f(x)

g(-x)

c(u)
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0 5 5 0 0 0 0 4 5 4 0 0 0 0 5 0 0 0 0 4 2 1 0

g(x)

0 1 2 4 0 0

c(u) = f ( x)g(u − x)dx
−∞

∞

∫

00

c(u) = f (x)∗ g(x)

f(x)

g(-x)

c(u)
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0 5 5 0 0 0 0 4 5 4 0 0 0 0 5 0 0 0 0 4 2 1 0

g(x)

0 1 2 4 0 0

c(u) = f ( x)g(u − x)dx
−∞

∞

∫

00

c(u) = f (x)∗ g(x)

f(x)

g(-x)

c(u)

0
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0 5 5 0 0 0 0 4 5 4 0 0 0 0 5 0 0 0 0 4 2 1 0

g(x)

0 1 2 4 0 0

c(u) = f ( x)g(u − x)dx
−∞

∞

∫

0 200

c(u) = f (x)∗ g(x)

f(x)

g(-x)

c(u)

0
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0 5 5 0 0 0 0 4 5 4 0 0 0 0 5 0 0 0 0 4 2 1 0

g(x)

0 1 2 4 0 0

c(u) = f ( x)g(u − x)dx
−∞

∞

∫

0 20 300

c(u) = f (x)∗ g(x)

f(x)

g(-x)

c(u)

0
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0 5 5 0 0 0 0 4 5 4 0 0 0 0 5 0 0 0 0 4 2 1 0

g(x)

0 1 2 4 0 0

c(u) = f ( x)g(u − x)dx
−∞

∞

∫

0 20 30 150

c(u) = f (x)∗ g(x)

f(x)

g(-x)

c(u)

0
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0 5 5 0 0 0 0 4 5 4 0 0 0 0 5 0 0 0 0 4 2 1 0

g(x)

0 1 2 4 0 0

c(u) = f ( x)g(u − x)dx
−∞

∞

∫

0 20 30 15 50

c(u) = f (x)∗ g(x)

f(x)

g(-x)

c(u)

0
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0 5 5 0 0 0 0 4 5 4 0 0 0 0 5 0 0 0 0 4 2 1 0

g(x)

0 1 2 4 0 0

c(u) = f ( x)g(u − x)dx
−∞

∞

∫

0 20 30 15 5 00

c(u) = f (x)∗ g(x)

f(x)

g(-x)

c(u)

0
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0 5 5 0 0 0 0 4 5 4 0 0 0 0 5 0 0 0 0 4 2 1 0

g(x)

0 1 2 4 0 0

c(u) = f ( x)g(u − x)dx
−∞

∞

∫

0 20 30 15 5 0 00

c(u) = f (x)∗ g(x)

f(x)

g(-x)

c(u)

0
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0 5 5 0 0 0 0 4 5 4 0 0 0 0 5 0 0 0 0 4 2 1 0

g(x)

0 1 2 4 0 0

c(u) = f ( x)g(u − x)dx
−∞

∞

∫

0 20 30 15 5 0 0 160

c(u) = f (x)∗ g(x)

f(x)

g(-x)

c(u)

0
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0 5 5 0 0 0 0 4 5 4 0 0 0 0 5 0 0 0 0 4 2 1 0

g(x)

0 1 2 4 0 0

c(u) = f ( x)g(u − x)dx
−∞

∞

∫

0 20 30 15 5 0 0 16 280

c(u) = f (x)∗ g(x)

f(x)

g(-x)

c(u)

0
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0 0 4 2 1 0

g(x)

0 1 2 4 0 0

c(u) = f ( x)g(u − x)dx
−∞

∞

∫

0 20 30 15 5 0 0 16 28 300

c(u) = f (x)∗ g(x)

f(x)

g(-x)

c(u)

0

0 5 5 0 0 0 0 4 5 4 0 0 0 0 5 0 0
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0 0 4 2 1 0

g(x)

0 1 2 4 0 0

c(u) = f ( x)g(u − x)dx
−∞

∞

∫

0 20 30 15 5 0 0 16 28 30 130

c(u) = f (x)∗ g(x)

f(x)

g(-x)

c(u)

0

0 5 5 0 0 0 0 4 5 4 0 0 0 0 5 0 0
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0 0 4 2 1 0

g(x)

0 1 2 4 0 0

c(u) = f ( x)g(u − x)dx
−∞

∞

∫

0 20 30 15 5 0 0 16 28 30 13 40

c(u) = f (x)∗ g(x)

f(x)

g(-x)

c(u)

0

0 5 5 0 0 0 0 4 5 4 0 0 0 0 5 0 0
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0 0 4 2 1 0

g(x)

0 1 2 4 0 0

c(u) = f ( x)g(u − x)dx
−∞

∞

∫

0 20 30 15 5 0 0 16 28 30 13 4 00

c(u) = f (x)∗ g(x)

f(x)

g(-x)

c(u)

0

0 5 5 0 0 0 0 4 5 4 0 0 0 0 5 0 0



III.C.6 Diffraction
III.C.6.g Convolution and Multiplication

0 0 4 2 1 0

g(x)

0 1 2 4 0 0

c(u) = f ( x)g(u − x)dx
−∞

∞

∫

0 20 30 15 5 0 0 16 28 30 13 4 0 0 20 10 5 0 00 0

c(u) = f (x)∗ g(x)

f(x)

g(-x)

c(u)

0

0 5 5 0 0 0 0 4 5 4 0 0 0 0 5 0 0



Convolution of hand and 2D lattice produces 2D crystal 
of hands

III.C.6 Diffraction
III.C.6.g Convolution and Multiplication

f1

f2
f3



Convolution of Duck and 2D Lattice Produces 2D Crystal 
of Ducks

From Holmes and Blow, Fig. 4, p.123

III.C.6 Diffraction
III.C.6.g Convolution and Multiplication
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Convolution Theorem:

Provides a precise way to describe the relationship between 
objects (real space) and transforms (reciprocal space)

The Fourier transform of the convolution of two functions 
is the product of their Fourier transforms

T(f *g) = F x G

Symbols: * = convolution operation
X = multiplication operation

f and g represent two separate functions 

F and G are the respective Fourier transforms
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Convolution Theorem:

The Fourier transform of the convolution of two functions 
is the product of their Fourier transforms

The converse relationship also holds:

The Fourier transform of the product of two functions is 
equal to the convolution of the transforms of the 
individual functions

T(f *g) = F x G

T(f x g) = F * G
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Crystal Structure:
(real space)

f3 = f1 * f2  (f1 = unit cell contents; f2 = real space lattice)

f3 = T-1(F3)

f3 = T-1(F1 x F2)

Equivalent to the convolution of the contents of the unit 
cell (f1) with a finite lattice (f2)

The above equation can also be written as:
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Transform of Crystal Structure:
(reciprocal space)

F3 = F1 x F2

= T(f3)

= T(f1 * f2)

Equivalent to the transform of the unit cell contents, F1, 
multiplied (sampled) by the transform of the crystal 
lattice, F2 (reciprocal lattice)

These examples are easy to conceptualize because, in 
each case, one of the functions (f2 or F2) is “simple”
(i.e. an array of points or a lattice)
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In the reciprocal lattice, the sampling interval is 
reciprocally related to the real space lattice repeat

F1, the transform of the contents of the unit cell, is a 
continuous function

F3, the transform of the crystal, is discrete (because F2 is 
discrete)

The crystal transform (F3) is the transform of the single 
unit cell "sampled" at the reciprocal lattice points

Values of the Fourier transform at the reciprocal lattice 
points are called the structure factors (Fhkl)
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1-D lattices give rise to transforms sampled in 
only one direction



Effect of Crystal Lattice on Transform
(Transform Sampling)

FT



1 hand

Effect of Crystal Lattice on Transform
(Transform Sampling)



2 hands

Effect of Crystal Lattice on Transform
(Transform Sampling)



4 hands

Effect of Crystal Lattice on Transform
(Transform Sampling)



8 hands

Effect of Crystal Lattice on Transform
(Transform Sampling)



16 hands

Effect of Crystal Lattice on Transform
(Transform Sampling)
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2-D lattices produce sampling on a 2-D grid or 
reciprocal lattice

1-D lattices give rise to transforms sampled in 
only one direction

Example 1: Orthogonal 2-D lattice



1 hand

Effect of 2-D Crystal Lattice on Transform
(Transform Sampling)



2 x 1 crystal

Effect of 2-D Crystal Lattice on Transform
(Transform Sampling)



2 x 2 crystal

Effect of 2-D Crystal Lattice on Transform
(Transform Sampling)



4 x 4 crystal

Effect of 2-D Crystal Lattice on Transform
(Transform Sampling)



8 x 8 crystal

Effect of 2-D Crystal Lattice on Transform
(Transform Sampling)



16 x 8 crystal

Effect of 2-D Crystal Lattice on Transform
(Transform Sampling)
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2-D lattices produce sampling on a 2-D grid or 
reciprocal lattice

1-D lattices give rise to transforms sampled in 
only one direction

Example 2: Non-orthogonal 2-D lattice



Effect of 2-D Crystal Lattice on Transform
(Transform Sampling)

2 x 2 crystal

a

b
a*

b*



2 x 2 crystal

Effect of 2-D Crystal Lattice on Transform
(Transform Sampling)

a

b
a*

b*



4 x 2 crystal

Effect of 2-D Crystal Lattice on Transform
(Transform Sampling)



4 x 4 crystal

Effect of 2-D Crystal Lattice on Transform
(Transform Sampling)



8 x 4 crystal

Effect of 2-D Crystal Lattice on Transform
(Transform Sampling)



8 x 8 crystal

Effect of 2-D Crystal Lattice on Transform
(Transform Sampling)



16 x 8 crystal

Effect of 2-D Crystal Lattice on Transform
(Transform Sampling)



16 x 8 crystal

Effect of 2-D Crystal Lattice on Transform
(Transform Sampling)
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If the phase and amplitude (structure factor) at 
each point hk in the 2-D reciprocal lattice can be 
obtained, the crystal and motif structures can 
be solved by mathematical Fourier synthesis 
(inverse Fourier transformation)



Diffraction Pattern of N Wide Slits
(Fourier  Transform and Convolution Relationships)

From Sherwood, Fig. 7.21, p.255

slit

T(slit)
sin(x)/x

window
(thick slit)

T(window)
sin(x)/x

finite lattice of slitslattice (real)

lattice (reciprocal) FT of finite lattice of slits

Real Space

Reciprocal Space



Diffraction Pattern of N Wide Slits
(Fourier  Transform and Convolution Relationships)

From Sherwood, Fig. 7.21, p.255

slit

T(slit)
sin(x)/x

window
(thick slit)

T(window)
sin(x)/x

finite lattice of slitslattice (real)

lattice (reciprocal) FT of finite lattice of slits

Real Space

Reciprocal Space



- Fourier Synthesis and Analysis

- Image formation is a double diffraction process

- Bragg’s Law

- Structure factor and Argand diagram

- Convolution and multiplication

- Fourier transform

KEY CONCEPTS:

III.C CRYSTALS, SYMMETRY AND DIFFRACTION
III.C.6 Diffraction



III.C.6 Diffraction
III.C.6.h Other Properties of FTs and Diffraction Patterns

1) Analogy between OD and "Mathematical" FTs

2) Asymmetric / Symmetric Objects / Transforms

3) Reciprocity

4) Resolution

5) Sharpness of Diffraction Spots

6) Geometry, Intensity and Symmetry

7) Projection Theorem

8) Friedel's Law 
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Analogy between OD and "Mathematical" FTs

Optical bench is an excellent device for demonstrating 
properties of Fourier transforms and diffraction patterns

object lens diffraction
plane

image
plane

radiation
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Analogy between OD and "Mathematical" FTs

Optical Diffraction:

- Incident radiation is laser beam

- Diffraction grating (object) is transparency (e.g. EM 
micrograph) or mask

object lens diffraction
plane

image
plane

radiation
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Asymmetric vs. Symmetric Objects and Their Transforms

Simple, symmetric structures ⇒ simple, symmetric transforms

Asymmetric structures ⇒ complex transforms

Transforms are like fingerprints:

- Specific object features often give rise to characteristic 
features in the transform



Slit Transform

Simple Objects and Their Transforms

Single Slit

FT

sin(x)
x



Simple Objects and Their Transforms

Single Slit Slit Transform

FT

sin(x)
x



Simple Objects and Their Transforms

Single Slit Slit Transform

FT

sin(x)
x



Simple Objects and Their Transforms

Single Slit Slit Transform

FT

sin(x)
x



Simple Objects and Their Transforms

16

8

4

2



Simple Objects and Their Transforms

Rectangle Rectangle Transform

16 x 512

FT



Simple Objects and Their Transforms

16 x 256

FT

Rectangle Rectangle Transform



Simple Objects and Their Transforms

16 x 128

FT

Rectangle Rectangle Transform



Simple Objects and Their Transforms

16 x 64

FT

Rectangle Rectangle Transform



Simple Objects and Their Transforms

16 x 32

FT

Rectangle Rectangle Transform



Simple Objects and Their Transforms

16 x 16

FT

“Rectangle” “Rectangle” Transform



Simple Objects and Their Transforms

32 x 16

FT

Rectangle Rectangle Transform



Simple Objects and Their Transforms

16 x 32

FT

Rectangle TransformRectangle



Simple Objects and Their Transforms

FT

Circle TransformCircle



Simple Objects and Their Transforms

FT

Circle TransformCircle



Simple Objects and Their Transforms

FT

Circle TransformCircle



Simple Objects and Their Transforms

Square Square Transform

FT

FT

Circle TransformCircle



Simple Objects and Their Transforms

Square Square Transform

FT



Simple Objects and Their Transforms

FT

Circle TransformCircle
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Asymmetric vs. Symmetric Objects and Their Transforms

Simple, symmetric structures ⇒ simple, symmetric transforms

Asymmetric structures ⇒ complex transforms

Transforms are like fingerprints:

- Specific object features often give rise to characteristic 
features in the transform



?FT

Asymmetric Objects and Their Transforms

FT



Objects with Cyclic Symmetry and Their Transforms

C1



Objects with Cyclic Symmetry and Their Transforms

C1 C2



Objects with Cyclic Symmetry and Their Transforms

C2

C3

C1



Objects with Cyclic Symmetry and Their Transforms

C2

C4C3

C1



Objects with Cyclic Symmetry and Their Transforms

C2

C5

C4C3

C1



Objects with Cyclic Symmetry and Their Transforms

C2

C5 C6

C4C3

C1
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Asymmetric vs. Symmetric Objects and Their Transforms

Structure can be regenerated by back transformation ONLY
if the amplitudes and phases at ALL points of the FT are 
available

May be accomplished for:

Visible light (optical reconstruction)

Electrons (electron microscopy)

Can only be achieved by mathematical computation for:
X-rays and neutrons (phases indirectly measured)

Simple inspection of most transforms does NOT directly 
lead to a unique determination of structure
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Reciprocity

Dimensions in object (real space) are inversely related 
to dimensions in the transform (reciprocal space)
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Reciprocity

Small spacings in object - represented by features spaced 
far apart in reciprocal space
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Resolution

Outer regions of FT arise from fine (high resolution) details 
in the object

Coarse (low resolution) object features contribute near 
the central region of the FT
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Resolution

Low-pass/High-pass filtering

Low-pass: low-resolution features (near center of transform) 
are allowed to “pass” through filter and interfere 
(resynthesize) at image plane while high 
resolution features are removed

High-pass: low resolution Fourier components are removed
(i.e. blocked by filter) while high resolution 
Fourier components are allowed to “pass”
through filter and form an image (leads to 
accentuation of high resolution features such as edges)



Fourier Transform Filtering



Fourier Transform Filtering



Fourier Transform Filtering



Fourier Transform Filtering



Fourier Transform Filtering



Fourier Transform Filtering



Fourier Transform Filtering



From Holmes and Blow, Fig. 3, p.120
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Sharpness of Diffraction Spots

Features in the diffraction pattern become sharper as the 
number of diffracting objects or the distance between 
them increases

Sharpening reflects a situation of more complete, destructive 
interference away from the reciprocal lattice positions



Diffraction patterns of one, 
three, nine and 8 number 
of slits

From Sherwood, Fig. 7.16, p.249

Transform Sampling
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1) Analogy between OD and "Mathematical" FTs

2) Asymmetric / Symmetric Objects / Transforms

3) Reciprocity

4) Resolution

5) Sharpness of Diffraction Spots

6) Geometry, Intensity and Symmetry

7) Projection Theorem

8) Friedel's Law 
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Simple, symmetric structures ⇒ simple, symmetric transforms

Asymmetric structures ⇒ complex transforms

Transforms are like fingerprints

Simple inspection of most transforms does NOT directly 
lead to a unique determination of structure
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Reciprocity

Dimensions in object (real space) are inversely related 
to dimensions in the transform (reciprocal space)



Fourier Transform Filtering
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Sharpness of Diffraction Spots

Features in the diffraction pattern become sharper as the 
number of diffracting objects or the distance between 
them increases

Sharpening reflects a situation of more complete, destructive 
interference away from the reciprocal lattice positions
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Geometry, Intensity and Symmetry 

Geometry and spacings of the crystal and reciprocal lattices obey a 
reciprocal relationship

K = constant of diffraction (= λL)
λ = wavelength of monochromatic radiation
L = camera length (distance from specimen to diffraction plane)

γ* = angle between reciprocal lattice axes
γ = angle between unit cell axes

d* = reciprocal lattice spacing (a* or b*)
d = unit cell spacing (a or b)

and    γ* = 180− γ

d* =
K

d sinγ *
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Geometry, Intensity and Symmetry 

d* =
K

d sin γ *
 γ * = 180 − γ

Real Lattice

γ
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Geometry, Intensity and Symmetry 
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Real Lattice Reciprocal Lattice

The reciprocal lattice edges, of dimensions a* and b*, are respectively 
perpendicular to the cell edges b and a
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Geometry, Intensity and Symmetry 
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Each spot is indexed according to its position in the reciprocal lattice, 
and is considered to arise by diffraction from a set of density (Bragg) 
planes/lines in the 3-D/2-D crystal

Motif structure, NOT spacings or geometry of crystal lattice, determine 
the intensity distribution in transform

Spacings and geometry of crystal lattice only determine where the motif 
transform is sampled
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Geometry, Intensity and Symmetry 



One of major reasons why OD is powerful method for 
diagnosing presence of symmetry in biological specimens

Object rotational
symmetry

Transform rotational
symmetry

n even n
n odd 2n

Structural symmetry produces symmetrical intensity 
distributions in the transform (aside from Friedel symmetry)
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Geometry, Intensity and Symmetry 



Screw-axis symmetry in a crystal produces systematic 
absences in the transforms

III.C.6.h Other Properties of FTs and Diffraction Patterns

Geometry, Intensity and Symmetry 
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Geometry, Intensity and Symmetry 
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Geometry, Intensity and Symmetry 
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Geometry, Intensity and Symmetry 
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Geometry, Intensity and Symmetry 
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Geometry, Intensity and Symmetry 
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Geometry, Intensity and Symmetry 
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Geometry, Intensity and Symmetry 
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Projection Theorem

FT of the projected structure of a 3-D object is equivalent 
to a 2-D central section of the 3-D FT of the object

Central section intersects the origin of the 3-D transform 
and is perpendicular to the direction of projection

Basis of 3D reconstruction by Fourier methods:

- Several independent views of the projected structure 
are recorded and their 2-D transforms calculated to build 
up a complete 3-D transform

- 3-D structure is reconstructed from 2-D views by inverse 
Fourier transformation of 3-D FT



From Lake (Lipson), Fig. 14, p.174

Projection Theorem
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Friedel’s Law

Diffraction pattern from the projected structure of a real 
object has an inversion center in the intensity distribution

Amplitude at any point in the pattern is identical at a point 
equidistant and opposite in direction from the transform 
origin: |Fhkl | = |F-h,-k,-l |

Phases at these two points are opposite:  αhkl = -α-h,-k,-l

For periodic specimens with periodic patterns consisting of 
discrete spots (reflections), Friedel related spots are called
Friedel pairs



Object rotational
symmetry

Transform rotational
symmetry

n even n
n odd 2n

Friedel symmetry causes the transform of any real object to 
display 2-fold symmetry in the intensity distribution
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Friedel’s Law
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Friedel’s Law

Optical diffraction:

Should have PERFECT Friedel symmetry (if software is 
bug-free of course!)

Friedel's law generally fails (pattern does not exhibit perfect 

inversion symmetry in intensity distribution) because the object is a 
photographic transparency which causes irregular 
phase shifts of the incident radiation (laser light) as it 
passes through the emulsion and backing of the film

Mathematically computed diffraction patterns:



End of Sec.III.C.6


