[11.C CRYSTALS, SYMMETRY AND DIFFRACTION
111.C.6 Diffraction

Diffraction methods provide a powerful
way to study molecular structure
X-ray diffraction
Neutron diffraction
Electron diffraction
Optical diffraction

Computed diffraction



111.C.6 Diffraction

Ultimate goal:

Understand the chemical properties of molecules by
determining their atomic structure

Types of chemical bonds (ionic, covalent, or hydrogen)
Bond lengths and angles

Van der Waals radii

Rotations about single bonds

etc.



111.C.6 Diffraction

Presently, only X-ray and neutron diffraction technigues
are routinely capable of revealing the arrangement of
atoms In molecular structures

In 1912 von Laue predicted that X-rays should diffract from

crystals like light from a diffraction grating (later verified
experimentally by Friedrich and Knipping)

W. L. Bragg: developed concept of diffraction from crystal
planes and that the diffraction pattern could be used to
reveal atomic positions in crystals

Physical principles of X-ray diffraction form the fundamental
basis of Fourier image processing techniques
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I11.C.6.a Introduction to Diffraction Theory

Diffraction: non-linear propagation of electromagnetic
radiation

- Occurs when an object scatters the incident radiation

- Radiation scattered from different portions of the object

Interfere both constructively and destructively,
producing a diffraction pattern which can be recorded on a

photographic emulsion

Recall:

Electrons (in a TEM) are scattered both by the electrons
(inelastic scatter) and nuclei (elastic scatter) of specimen
atoms
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I11.C.6.a Introduction to Diffraction Theory

A characteristic of diffraction: (remember this!)

Each point in the diffraction pattern arises
from interference of rays scattered from all
iIrradiated portions of the object
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I11.C.6.a Introduction to Diffraction Theory

Structure determination by diffraction methods:

- Involves measuring or calculating the structure factor
(F) at many or all points of the diffraction pattern

- Each F is described by two quantities, an amplitude and
a phase

Amplitude:
Strength of interference at a particular point

Phase:

Relative time of arrival of scattered radiation (wave) at
a particular point
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I11.C.6.a Introduction to Diffraction Theory

Diffraction facts:

Amplitude is proportional to the square root of the intensity
In the recorded pattern

Amplitudept 4/ Intensity

Photographic film does not record the scattered amplitude,
but rather the intensity which is proportional to the
amplitude squared: i.e. Intensityu (Amplitude)’
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I11.C.6.a Introduction to Diffraction Theory

More Diffraction facts:

- Phase information is lost when the diffraction pattern is
recorded

- Phases cannot be measured directly from X-ray diffraction
photographs

The “Phase Problem”

- Major concern of structure determination using X-ray
crystallography

- Necessitates use of e.g. heavy atom, isomorphous
replacement, molecular replacement etc. methods
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I11.C.6.a Introduction to Diffraction Theory

X-ray phases could be obtained if it were possible to
rediffract (focus) scattered X-rays with a lens to form an
Image

We can directly visualize objects in electron and light
microscopes because electrons and visible photons
scattered by specimens can be focused with lenses to
form images
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I11.C.6.a Introduction to Diffraction Theory

In the absence of "noise", an image might be considered to
contain structural information (amplitudes and phases) in
directly interpretable form

Major advantage of image processing:

Provides an objective means to extract reliable structural
iInformation from noisy images



111.C.6 Diffraction
111.C.6.b The Fourier Transform

Fouriler
Transtorms



111.C.6 Diffraction
111.C.6.b The Fourier Transform

Mathematically describes the distribution of amplitude and
phase in different directions, for all possible directions of
the beam incident on the object

Fourier transform of an object is a particular kind of weighted
Integral of the object

In one-dimension:
¥

F(X)= Or (X)€" dx

-¥
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111.C.6.b The Fourier Transform

The Fourier transform in 1-D:

F(X)= Or (X)€" dx

- ¥
F(X) = the scattering function (diffraction pattern)
r (X) = the electron density function (object)

Integration is over all density values in the structure
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111.C.6.b The Fourier Transform

r (X): the object

r(x)
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111.C.6.b The Fourier Transform

The Fourier transform in 1-D:
¥
F(X)= Or (X)e?PX)dx
- ¥

For sampled (discrete) daga:
F(X)=a r (x)e*™

X
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111.C.6.b The Fourier Transform

r (X): the object

r(x)
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111.C.6.b The Fourier Transform

r (X): the object
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111.C.6.b The Fourier Transform

r (x): the object sampled

r(X)
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111.C.6.b The Fourier Transform

r (x): the object sampled

r(X)
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111.C.6.b The Fourier Transform

r (x): the object sampled

r(X)
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111.C.6.b The Fourier Transform

r (x): the object sampled
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111.C.6 Diffraction

KEY CONCEPTS:

- Diffraction methods provide a powerful means to study
and determine structure

- First goal of diffraction methods is to determine structure
factor amplitudes and phases; from these we can
reconstruct structure

- The Fourier transform is just a different way to represent
an object

- Any periodic object can be represented mathematically
as a summation of sinusoidal waves (Fourier synthesis)

- Image formation is considered a double diffraction process
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111.C.6 Diffraction

And some more KEY CONCEPTS:

- Bragg’s Law: visualizes diffraction as arising from reflection
of radiation from planes in crystals

- Structure factors are complex numbers

- Concepts of convolution and multiplication (sampling)
help us understand fundamental properties of Fourier
transforms
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111.C.6.b The Fourier Transform

In one-dimension:

F(X)= Or (X)€" dx

For sampled (discrete) datg
F(X)=a r (x)e*™

X
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111.C.6.b The Fourier Transform

Shorthand Notations:

F = Fourier transform of r
T = Forward Fourier transform operation

F=T(r)
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111.C.6.b The Fourier Transform

Inverse relationship: (property of FTSs)

Recall:

F(X)= Or (x)e®P®)dx

F(X) Is the forward transform of r (x)
¥

r (X) = OF (X)et2dx

thusr I1sthe inverse transform of F
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111.C.6.b The Fourier Transform

Inverse relationship: (property of FTSs)
¥

r (X)= OF (X)e" 2P gx
-¥
r 1S the inverse transform of F

In shorthand notation:
r=T*(F) = THT(r))

T-1 = inverse (reverse, back) Fourier transform operation
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111.C.6.b The Fourier Transform

Inversion theorem:

The Fourier transform of the Fourier transform
of an object is the original object

Theorem iIs analogous to Abbe's treatment of
Image formation which is considered to be a

double-diffraction process

We will return to this idea a bit later...
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I11.C.6.c Fourier Synthesis

Any periodic function may be mathematically represented
by a summation of a series of sinusoidal waves
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Any periodic function may be mathematically represented
by a summation of a series of sinusoidal waves
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I11.C.6.c Fourier Synthesis

Any periodic function may be mathematically represented
by a summation of a series of sinusoidal waves

In one-dimension, the Fourier synthesis can be expressed.:

r(X) = 5 A cos(2pnx/a)

n=- ¥



[11.C.6 Diffraction
I11.C.6.c Fourier Synthesis

I (X) = é A cos(2pnx/a)

NN NS
VARVARY,




[11.C.6 Diffraction
I11.C.6.c Fourier Synthesis

I (X) = é A cos(2pnx/a)
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I11.C.6.c Fourier Synthesis

I (X) = é¥ A cos(2pnx/a)

n=- ¥
r(X) = 1-D density function (object)
X = coordinate of a point in the object
a = repeat distance of 1-D periodic object
A, = Fourier coefficient (amplitude term) for wave number n
n = wave number (frequency) or cycles per repeat distance a

(2pnx/a) = phase term (position of wave with respect to a fixed origin
point in the repeating structure)
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I11.C.6.c Fourier Synthesis

(%)= & A, co2pnx/a)

r(x) = object

X = coordinate of point in object
a = repeat distance of 1-D periodic object
a
r(x)
«=04 \J/\/ \J/}J \J
0.0 1.0 2.0 3.0
X >

From Eisenberg & Crothers, Fig. 17-14, p.828
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I11.C.6.c Fourier Synthesis

(%)= & A, co2pnx/a)

r(x) = object

X = coordinate of point in object
a = repeat distance of 1-D periodic object
a
r(x)
= o.e\J/\/ \J/}J \J
0.0 1.0 2.0 3.0
X >

From Eisenberg & Crothers, Fig. 17-14, p.828
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I11.C.6.c Fourier Synthesis

(%)= & A, co2pnx/a)

r(x) = object
X = coordinate of point in object
a = repeat distance of 1-D periodic object

r(X) /\/\X /AV XlG\J/)O’/\/\

\J

3.0

From Eisenberg & Crothers, Fig. 17-14, p.828
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I11.C.6.c Fourier Synthesis

(%)= & A, co2pnx/a)

r(x) = object
X = coordinate of point in object
a = repeat distance of 1-D periodic object

a
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From Eisenberg & Crothers, Fig. 17-14, p.828
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_ _ Period
[11.C.6.c Fourier Synthesis h—0
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I11.C.6.c Fourier Synthesis

Fourier Synthesis:

- Mathematical combination of the waves to produce
the periodic function

Fourier Analysis:
- Opposite process

- Decomposition of the periodic function into its
component waves

- Example: analyzing the sound wave harmonics of a
musical instrument
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Analogy between Music and Structure

tone = S harmonics

structure = S structure factors
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I11.C.6.c Fourier Synthesis = rerod
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Superposition of Waves to Represent 1-D “Crystal”
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Summation of 2D Waves to Produce 2D “Electron Density”

020

From Eisenberg & Crothers, Fig. 17-15c, p.830
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I11.C CRYSTALS, SYMMETRY AND DIFFRACTION
REVIEW

Structure determination by diffraction methods:

- Involves measuring or calculating the structure factor
(F) at many or all points of the diffraction pattern

- Each F Is described by an amplitude and a phase
Amplitude:
Strength of interference at a particular point

Phase:

Relative time of arrival of scattered radiation (wave) at
a particular point



I11.C CRYSTALS, SYMMETRY AND DIFFRACTION
REVIEW

The Fourier Transform

Mathematically describes the distribution of amplitude and
phase in different directions, for all possible directions of
the beam incident on the object

Fourier transform of an object is a particular kind of weighted
Integral of the object

In one-dimension:

F(X)= Or (X)€" dx

-¥



I11.C CRYSTALS, SYMMETRY AND DIFFRACTION
REVIEW

The Fourier Transform

The Fourier transform in 1-D:

F(X)= Or (x)e®P)dx

- ¥
F(X) = the scattering function (diffraction pattern)
r (X) = the electron density function (object)

Integration is over all density values in the structure



I11.C CRYSTALS, SYMMETRY AND DIFFRACTION
REVIEW

The Fourier Transform

The Fourier transform in 1-D:

F(X) = a(x)e(Zpi“)dx A

For sampled (discrete) data:

F(X)=a r (x)e™)

X




I1.C CRYSTALS, SYMMETRY AND DIFFRACTION
REVIEW

The Fourier Transform

- Goal of diffraction methods: determine structure factor
amplitudes and phases; from these we can reconstruct
structure

- The Fourier transform is just a different way to represent
an object
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REVIEW
Inverse relationship: (property of FTs)

F(X)= Or (x)e®P®)dx

F(X) Is the forward transform of r (x)
¥

r (X) = OF (X)et2dx

thusr I1sthe inverse transform of F
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REVIEW
Inverse relationship: (property of FTs)

¥

r (X)= OF (X)e" 2P gx

r i1s the inverse transform of F

= THF) = THT()
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REVIEW

Fourier Synthesis

- Any periodic object can be represented mathematically
as a summation of sinusoidal waves

In one-dimension, the Fourier synthesis can be expressed.:

r(X) = 5 A cos(2pnx/a)

n=- ¥
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REVIEW

Fourier Synthesis

- Period .
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From Eisenberg & Crothers, Fig. 17-14, p.828



I1.C CRYSTALS, SYMMETRY AND DIFFRACTION
REVIEW

Fourier Synthesis:

- Mathematical combination of the waves to produce
the periodic function

Fourier Analysis:
- Opposite process

- Decomposition of the periodic function into its
component waves
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REVIEW
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REVIEW

OK, that'’s
enough review



[11.C.6 Diffraction
I11.C.6.d Image Formation as a Double Diffraction Process

According to Abbe's theory, image formation is a two-
stage, double-diffraction process

radiation object lens diffraction image
plane plane

An image Is the diffraction pattern of the diffraction
pattern of an object
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I11.C.6.d Image Formation as a Double Diffraction Process

radiation object lens diffraction image
plane plane

1st stage of image formation

Collimated (parallel) beam of rays incident on the object is scattered and the
interference pattern (Fraunhofer diffraction pattern) is brought to focus at
the back focal plane of the lens
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I11.C.6.d Image Formation as a Double Diffraction Process

radiation object lens diffraction image

plane plane
=

FT
1st stage of image formation

1st stage sometimes referred to as the forward Fourier transformation

Intensity distribution of the recorded diffraction pattern of an object is
proportional to the square of the Fourier transform of the object

Terms “transform” and “diffraction pattern” are often used interchangeably, but
strictly speaking they are not equivalent
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I11.C.6.d Image Formation as a Double Diffraction Process

radiation object lens diffraction image
plane plane
=

FT
1st stage of image formation

A lens (essential for image formation) focuses the diffraction pattern at a
finite distance from the object (at back focal plane of lens)

If remove lens, no image forms, but instead Fresnel diffraction patterns
form at finite distances from the object and the Fraunhofer diffraction
pattern forms at infinity (large distance relative to the object size or wavelength
of radiation used)

In X-ray diffraction experiments, there is no lens to focus the X-rays
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I11.C.6.d Image Formation as a Double Diffraction Process

radiation object lens diffraction image
plane plane
=

. FT FT #2
2nd stage of image formation

Occurs when the scattered radiation passes beyond the back focal plane of
the lens and interferes (recombines) to form an image

Called back or inverse Fourier transformation stage

Recall: Image cannot exactly represent the object because some scattered
rays never enter the lens and cannot be focused at the image plane
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I11.C.6.d Image Formation as a Double Diffraction Process

radiation object lens diffraction image
plane plane

=

FT FT #2

Analysis Synthesis

Image formation analogous to:

Fourier analysis in first stage

Fourier synthesis in second stage
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I11.C.6.d Image Formation as a Double Diffraction Process

radiation object lens diffraction image
plane plane
=

FT FT #2
Fourier image analysis is a powerful method for analyzing a wide variety
of periodic specimens because:

- Separates processing of electron micrograph images into two stages

- Formation of diffraction pattern in 1st stage reveals structural information in a
straightforward manner and conveniently and objectively separates most
of the signal and noise components in the image

-Transform may then be manipulated and subsequently back-transformed in
2nd stage to produce a noise-filtered, reconstructed image
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[11.C.6 Diffraction
I11.C.6.e Bragg Diffraction

Bragg's Law
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111.C.6.e Bragg Diffraction

Bragg's Law

nl = 2d sing,-,

From Vainshtein, Fig. 4.2, p.224
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111.C.6.e Bragg Diffraction |y

Diffraction can be conceptualized as arising from the
reflection of radiation from planes of electron density in
the 3D crystal (or lines in a 2D crystal)

These planes are imaginary parallel planes within crystals

Each set of planes is identified by three Miller indices,
hkl, which are the reciprocals of the intercepts, in units of
cell edge lengths, that the plane makes with the axes of
the unit cell
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111.C.6.e Bragg Diffraction

Miller Indices of Lattice Planes in a Crystal

b,
a* i
hk(2-D), hkl(3-D):
The reciprocals of the intercepts,
in units of cell edge lengths, 11 ’/,/:
®

|

that the plane/line makes with

From Eisenberg & Crothers, Fig. 17-7, p.811



[11.C.6 Diffraction
111.C.6.e Bragg Diffraction |y

Diffraction from the hkl set of planes, separated a
distance d,,, only occurs for certain orientations of
the incident radiation according to the Bragg relation:

nl = 2d sing,-,

n =integer
| = wavelength of incident radiation

d., = crystal lattice spacing between the [hkl] set of
crystal planes

Jnq = angle of incidence and also of reflection
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111.C.6.e Bragg Diffraction

Bragg's Law

dsing dsing

nl = 2d sing,-,

From Vainshtein, Fig. 4.2, p.224
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111.C.6.e Bragg Diffraction |y

Intensity of each hkl reflection is proportional to the
distribution of electron density in the hkl planes

In some planes the density may be evenly distributed
and the corresponding reflection will be relatively weak

In others, where the density is concentrated in one region
between the planes, the corresponding reflection will be
strong
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111.C.6.e Bragg Diffraction |y

Intensity of each hkl reflection is proportional to the
distribution of electron density in the hkl planes

In some planes the density may be evenly distributed
and the corresponding reflection will be relatively weak

In others, where the density is concentrated in one region
between the planes, the corresponding reflection will be
strong
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111.C.6.e Bragg Diffraction

2D Crystal of Hands and Corresponding Reciprocal Lattice

\ Two Bragg-type “planes” (lines
N M‘\v here in 2-D) are depicted in this

2-D crystal of hands

NN
U&\\\lf\\l,m\ [1,2] and [2,3] are shown
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111.C.6.e Bragg Diffraction

2D Crystal of Hands and Corresponding Reciprocal Lattice
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111.C.6.e Bragg Diffraction

2D Crystal of Hands and Corresponding Reciprocal Lattice

real space reciprocal space
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111.C.6.e Bragg Diffraction

k
iy gy gy P
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b y B 'if* \ 2]
—_l0
real space a o »W\&Lreciprocal Space
h

Density that lies between the dashed lines diffract at the reciprocal lattice point
labeled [1,2] (and also its Friedel mate, [-1,-2], not shown)

Spacing (perpendicular distance) between the lines is inversely proportional to
the distance of the [1,2] reciprocal lattice point from the origin

Relative to the transform origin (where q,,,= 0°, which corresponds to direction of
unscattered radiation), the reciprocal lattice point appears in a direction
normal to the set of lines
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111.C.6.e Bragg Diffraction |y

For 2D, periodic structures, each Friedel pair of spots arises from a set

of fringes (sinusoidal density waves) of particular spacing (frequency)
and orientation in the crystal

The so-called Miller index of each spot corresponds to the two wave
numbers (h and k) which describe the number of wave cycles per
repeat in the a and b directions.

the Miller index of each spot is
assigned three wave numbers
(h,k,l) corresponding to the 010 (©) 110
number of wave cycles per
repeat in the three unit cell
directions (a,b,c)

For diffraction from 3D crystals, I
b

111
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111.C.6.e Bragg Diffraction &N T

Each spot or reflection in the diffraction pattern may be
mathematically represented in real space as a plane
wave whose amplitude is proportional to the square root of
the spot intensity and whose phase is measured relative to a
particular origin point in the crystal (e.g. the unit cell origin).

When the amplitudes and phases (structure factors, F,,) of
all spots in the 3D transform are known, the corresponding
real space density waves can be mathematically summed
(Fourier synthesis) to reconstruct the 3D object density

n1D: ' (X)= a A, cos(2pnx/a)

n=- ¥
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111.C.6 Diffraction

KEY CONCEPTS:

- Any periodic object can be represented mathematically
as a summation of sinusoidal waves (Fourier synthesis)

- Image formation is considered a double diffraction process

- Bragg’s Law: visualizes diffraction as arising from reflection
of radiation from planes in crystals

- Structure factors are complex numbers
- Concepts of convolution and multiplication (sampling)

help us understand fundamental properties of Fourier
transforms
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111.C.6 Diffraction
111.C.6.f Structure Factor

Structure
Factor
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111.C.6.f Structure Factor

The structure factor describes the scattering from all
atoms of the unit cell for a particular Bragg reflection

Each diffracted ray, or reflection, is described by one
structure factor, F,

F. Is a complex number whose magnitude (amplitude) is
proportional to the square root of the intensity of the hkl
reflection

Each structure factor may be regarded as a sum of the
contributions of the radiation scattered in the same
direction from all atoms within the unit cell
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111.C.6.f Structure Factor

For an object with n atoms, the structure factor equation is:

o =& 1, exp[2pi(hx, +ky, +12, )]

J=1

f. = atomic scattering factor for atom |

J
= ratio of amplitude scattered by the atom
amplitude scattered by a single electron

= atomic number at zero scattering angle
< atomic number at larger scattering angles

hkl = particular set of diffracting planes
X,,¥;,Z; = fractional unit cell coordinates for atom j in the unit cell




111.C.6 Diffraction
111.C.6.f Structure Factor

F, = ér{ f exp [2pi(hxj +ky +1z )]

J=1

Recall: el9= cosq + ising, so above can be rewritten:

F. :éi fj{cos[Zp (hxj +ky, +1z )]+isin[ao (hxj +ky, +1z )]}

j=1

f, cos.[Zp(hxj +Kky; +1z )]+ién_ fjsin[2p (hxj + Ky, +Izj)]
j=1

= Apg t 1By

Thus, F, is a complex quantity, with real (A,) and
Imaginary (By,,) parts



111.C.6 Diffraction
111.C.6.f Structure Factor

Argand Diagram

A convenient way to depict F,, i

F. . is plotted as a vector quantity with: /\
horizontal axis = real axis

. . . . . hY
vertical axis =imaginary axis N\

/ By
Vector F,,, makes an angle a

. ; \/
with respect to real axis

Ay real

F, = vector sum of A, (real component) and B, (imaginary component)

Magnitudes of vectors A,,, and B, are: |F,|cos(a,,) and |F,|sin(a,,)



111.C.6 Diffraction
111.C.6.f Structure Factor

Structure factor amplitude (modulus or magnitude of F, ): Y&, %2

Y0 72= [(An)® + (Bri) 1M

Structure factor phase: Akl

= Y&, 7e0s(a,,) + Y&, Ysin(a,,)
N J -

Y _ _ h'd
real Imaginary

J

= YFvexp(ia,)



111.C.6 Diffraction
111.C.6.f Structure Factor

For a 3D structure with continuous density, r(xyz), the
structure factor equation becomes:

N\\N\

Fry =V @ (xyz)exp(2pi [hx+ky+1z]) dx dy dz
Integration is over the entire unit cell volume, V.

Reemphasizes a property of Fourier transforms: Every
point in the object contributes to every point in the
diffraction pattern
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111.C CRYSTALS, SYMMETRY AND DIFFRACTION

[11.C.6 Diffraction
111.C.6.g Convolution and Multiplication

- Convolution
- Multiplication



[11.C.6 Diffraction
111.C.6.g Convolution and Multiplication

These concepts provide a fundamental basis for under-
standing diffraction from crystalline objects

According to Holmes and Blow (1965), convolution of two
functions can be described in the following way:

"Set down the origin of the first function in every
possible position of the second, multiply the value
of the first function in each position by the value of the
second at that point and take the sum of all such

possible operations.”

Sounds simple enough...right?

Well, sort of...especially if one function is “simple”



[11.C.6 Diffraction
111.C.6.g Convolution and Multiplication

Mathematical expression for convolution:

¥

c(u) = Of (x)g(u - x)dx

This is known as the convolution of f(x) and g(x), and
may be written in shorter form as:

c(u) = 1(x)* g(x)



[11.C.6 Diffraction
111.C.6.g Convolution and Multiplication

Convolution of f(x), an array of d functions, with g(x), an
arbitrary function

VS (x) | 8x) he(u)

I A _ AANAANANAAN

X X U

From Sherwood, Fig. 5.19, p.173



111.C.6 Diffraction

111.C.6.g Convolution and Multiplication
¥

c(u) = F()* g(x) c(u) = Of (x)g(u- x)dx

f(x) 9(x)

0 0 50 0 0 0 065000 0 0 5 00 0 0 4 2 1 O

9(-x)

01 2 4 0 O

c(u)




111.C.6 Diffraction

111.C.6.g Convolution and Multiplication
¥

c(u) = F()* g(x) c(u) = Of (x)g(u- x)dx

f(x) 9(x)

0 0 50 0 0 0 065000 0 0 5 00 0 0 4 2 1 O

9(-x)

01 2 4 0 O

c(u)




f(x)

9(-x)

111.C.6 Diffraction

111.C.6.g Convolution and Multiplication

¥

c(u) = F()* g(x) c(u) = Of (x)g(u- x)dx

9(x)

0 0 50 0 0 0 065000 0 0 5 00 0 0 4 2 1 O

01 2 4 0 O

c(u)




f(x)

9(-x)

111.C.6 Diffraction

111.C.6.g Convolution and Multiplication

¥

c(u) = F()* g(x) c(u) = Of (x)g(u- x)dx

9(x)

0 0 50 0 0 0 065000 0 0 5 00 0 0 4 2 1 O

01 2 4 0 O

c(u)




111.C.6 Diffraction

111.C.6.g Convolution and Multiplication
¥

c(u) = F()* g(x) c(u) = Of (x)g(u- x)dx

f(x) 9(x)

0 0 50 0 0 0 065000 0 0 5 00 0 0 4 2 1 O

9(-x)

01 2 4 0 O

c(u)

0 0 0 O



f(x)

9(-x)

c(u)

111.C.6 Diffraction

111.C.6.g Convolution and Multiplication
¥

c(u) = F()* g(x) c(u) = Of (x)g(u- x)dx

9(x)

0 0 50 0 0 0 065000 0 0 5 00 0 0 4 2 1 O

01 2 4 0 O

0 0 0 0 20



111.C.6 Diffraction

111.C.6.g Convolution and Multiplication
¥

c(u) = F()* g(x) c(u) = Of (x)g(u- x)dx

f(x) 9(x)

0 0 50 0 0 0 065000 0 0 5 00 0 0 4 2 1 O

9(-x)

01 2 4 0 O

c(u)

0O 0 0 0 20 10



f(x)

9(-x)

c(u)

[11.C.6 Diffraction
111.C.6.g Convolution and Multiplication

c(u) = F()* g(x) c(u) = Of (x)g(u- x)dx

0 0 50 0 0 0 065000 0 0 5 00

9(x)

0 0 4 2 1 O

0O 0 0 0 20 10 5



f(x)

9(-x)

c(u)

[11.C.6 Diffraction
111.C.6.g Convolution and Multiplication

c(u) = F()* g(x) c(u) = Of (x)g(u- x)dx

0 0 50 0 0 0 065000 0 0 5 00

9(x)

0 0 4 2 1 O

0O 0 0 0 20 10 5 O



111.C.6 Diffraction

111.C.6.g Convolution and Multiplication
¥

c(u) = F()* g(x) c(u) = Of (x)g(u- x)dx

f(x) 9(x)

0 0 50 0 0 0 065000 0 0 5 00 0 0 4 2 1 O

9(-x)

01 2 4 0 O

c(u)

0O 0 0 0 2010 5 0 O



111.C.6 Diffraction

111.C.6.g Convolution and Multiplication
¥

c(u) = F()* g(x) c(u) = Of (x)g(u- x)dx

f(x) 9(x)

0 0 50 0 0 0 065000 0 0 5 00 0 0 4 2 1 O

9(-x)

01 2 4 0 O

c(u)

0O 0 0 0 2010 5 0 0 O



111.C.6 Diffraction

111.C.6.g Convolution and Multiplication
¥

c(u) = F()* g(x) c(u) = Of (x)g(u- x)dx

f(x) 9(x)

0 0 50 0 0 0 065000 0 0 5 00 0 0 4 2 1 O

9(-x)

01 2 4 0 O

c(u)

0O 0 0 0 2010 5 0 0 0 20



111.C.6 Diffraction

111.C.6.g Convolution and Multiplication
¥

c(u) = F()* g(x) c(u) = Of (x)g(u- x)dx

f(x) 9(x)

0 0 50 0 0 0 065000 0 0 5 00 0 0 4 2 1 O

9(-x)

01 2 4 0 O

c(u)

O 0 0 0 2010 5 0 0 0 20 10



f(x)

9(-x)

c(u)

[11.C.6 Diffraction
111.C.6.g Convolution and Multiplication

c(u) = F()* g(x) c(u) = Of (x)g(u- x)dx

0 0 50 0 0 0 065000 0 0 5 00

9(x)

0 0 4 2 1 O

0O 0 0 0 2010 5 0 O O 20 10 5



111.C.6 Diffraction

111.C.6.g Convolution and Multiplication
¥

c(u) = F()* g(x) c(u) = Of (x)g(u- x)dx

f(x) g(x)

0 0 50 0 0 0 065000 0 0 5 00 0 0 4 2 1 O

9(-x)

01 2 4 0 O

c(u)

0O 0 0 0 2010 5 0 0 02010 5 0 0 O



f(x)

9(-x)

c(u)

111.C.6 Diffraction

111.C.6.g Convolution and Multiplication

¥

c(u) = F()* g(x) c(u) = Of (x)g(u- x)dx

9(x)

0 0 50 0 0 0 065000 0 0 5 00 0 0 4 2 1 O

01 2 4 0 O

0O 0 0 020105 0 0O 210 5 0 0 0 2010 5 0 0 O



111.C.6 Diffraction

111.C.6.g Convolution and Multiplication
¥

c(u) = F()* g(x) c(u) = Of (x)g(u- x)dx

f(x) 9(x)

0 0 50 0 0 0 065000 0 0 5 00 0 0 4 2 1 O

9(-x)

01 2 4 0 O

c(u)




111.C.6 Diffraction

111.C.6.g Convolution and Multiplication
¥

c(u) = F()* g(x) c(u) = Of (x)g(u- x)dx

f(x) 9(x)

0 55 00 0 0 45 400 0 05 00 0 0 4 2 1 O

9(-x)

01 2 4 0 O

c(u)




f(x)

9(-x)

111.C.6 Diffraction

111.C.6.g Convolution and Multiplication

¥

c(u) = F()* g(x) c(u) = Of (x)g(u- x)dx

9(x)

0 55 00 0 0 45 400 0 05 00 0 0 4 2 1 O

01 2 4 0 O

c(u)




f(x)

9(-x)

111.C.6 Diffraction

111.C.6.g Convolution and Multiplication

¥

c(u) = F()* g(x) c(u) = Of (x)g(u- x)dx

9(x)

0 55 00 0 0 45 400 0 05 00 0 0 4 2 1 O

01 2 4 0 O

c(u)




111.C.6 Diffraction

111.C.6.g Convolution and Multiplication
¥

c(u) = F()* g(x) c(u) = Of (x)g(u- x)dx

f(x) 9(x)

0 55 00 0 0 45 400 0 05 00 0 0 4 2 1 O

9(-x)

01 2 4 0 O

c(u)

0 0 0 20
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111.C.6.g Convolution and Multiplication
¥

c(u) = F()* g(x) c(u) = Of (x)g(u- x)dx

f(x) 9(x)

0 55 00 0 0 45 400 0 05 00 0 0 4 2 1 O

9(-x)

01 2 4 0 O

c(u)

0 0 0O 20 30



111.C.6 Diffraction

111.C.6.g Convolution and Multiplication
¥

c(u) = F()* g(x) c(u) = Of (x)g(u- x)dx

f(x) 9(x)

0 55 00 0 0 45 400 0 05 00 0 0 4 2 1 O

9(-x)

01 2 4 0 O

c(u)

0 0 0 20 30 15



f(x)

9(-x)

c(u)

[11.C.6 Diffraction
111.C.6.g Convolution and Multiplication

c(u) = F()* g(x) c(u) = Of (x)g(u- x)dx

0 55 00 0 0 45 400 0 05 00

9(x)

0 0 4 2 1 O

0 0 0 20 30 15 5
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111.C.6.g Convolution and Multiplication
¥

c(u) = F()* g(x) c(u) = Of (x)g(u- x)dx

f(x) 9(x)

0 55 00 0 0 45 400 0 05 00 0 0 4 2 1 O

9(-x)

c(u)

0 0 0 20 30 15 5 O
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111.C.6.g Convolution and Multiplication
¥

c(u) = F()* g(x) c(u) = Of (x)g(u- x)dx

f(x) 9(x)

0 55 00 0 0 45 400 0 05 00 0 0 4 2 1 O

9(-x)

01 2 4 0 O

c(u)

0 0 0 20 30 15 5 0 O
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111.C.6.g Convolution and Multiplication
¥

c(u) = F()* g(x) c(u) = Of (x)g(u- x)dx

f(x) 9(x)

0 55 00 0 0 45 400 0 05 00 0 0 4 2 1 O

9(-x)

01 2 4 0 O

c(u)

0O 0 0 20 30 15 5 O O 16
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111.C.6.g Convolution and Multiplication
¥

c(u) = F()* g(x) c(u) = Of (x)g(u- x)dx

f(x) g(x)

0 55 00 0 0 45 400 0 05 00 0 0 4 2 1 O

9(-x)

01 2 4 0 O

c(u)

0 0 0 20 30 15 5 O O 16 28
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111.C.6.g Convolution and Multiplication
¥

c(u) = F()* g(x) c(u) = Of (x)g(u- x)dx

f(x) g(x)

0 55 00 0 0 45 400 0 05 00

9(-x)

01 2 4 0 O

c(u)

0 0 0 20 30 15 5 O O 16 28 30



111.C.6 Diffraction

111.C.6.g Convolution and Multiplication
¥

c(u) = F()* g(x) c(u) = Of (x)g(u- x)dx

f(x) g(x)

0 55 00 0 0 45 400 0 05 00

9(-x)

c(u)

0 0 0 20 30 15 5 O O 16 28 30 13
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111.C.6.g Convolution and Multiplication
¥

c(u) = F()* g(x) c(u) = Of (x)g(u- x)dx

f(x) g(x)

0 55 00 0 0 45 400 0 05 00

9(-x)

c(u)

[ ]

0O 0 0 20 30 15 5 O O 16 28 30 13 4
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111.C.6.g Convolution and Multiplication
¥

c(u) = F()* g(x) c(u) = Of (x)g(u- x)dx

f(x) g(x)

0 55 00 0 0 45 400 0 05 00

9(-x)

c(u)

[ ]

0 0 0 20 30 15 5 O O 16 28 30 13 4 O
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111.C.6.g Convolution and Multiplication
¥

c(u) = F()* g(x) c(u) = Of (x)g(u- x)dx

f(x) g(x)

0 55 00 0 0 45 400 0 05 00

9(-x)

01 2 4 0 O

c(u)

[ ]

0 0 0 20 30 15 5 O O 16 28 30 13 4 0 O 2010 5 0O O O




[11.C.6 Diffraction
111.C.6.g Convolution and Multiplication

Convolution of hand and 2D lattice produces 2D crystal

R T ekt
(RIS 2230



[11.C.6 Diffraction
111.C.6.g Convolution and Multiplication

Convolution of Duck and 2D Lattice Produces 2D Crystal

of Ducks
f f

S
" ALflofL
T

From Holmes and Blow, Fig. 4, p.123



[11.C.6 Diffraction
111.C.6.g Convolution and Multiplication

Convolution Theorem:

Provides a precise way to describe the relationship between
objects (real space) and transforms (reciprocal space)

The Fourier transform of the convolution of two functions
IS the product of their Fourier transforms

T(fxg) =F xXG

Symbols: x = convolution operation
X = multiplication operation

f and g represent two separate functions

F and G are the respective Fourier transforms



[11.C.6 Diffraction
111.C.6.g Convolution and Multiplication

Convolution Theorem:

The Fourier transform of the convolution of two functions
IS the product of their Fourier transforms

T(fxg) =F xXG

The converse relationship also holds:

The Fourier transform of the product of two functions is
equal to the convolution of the transforms of the
Individual functions

TEXg)=FxG
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Crystal Structure: f3 = fl * f2 (f, = unit cell contents; f, = real space lattice)
(real space)

Equivalent to the convolution of the contents of the unit
cell (f,) with a finite lattice (f,)

The above equation can also be written as:
f3 = T1(F)

f =T1(F,xF),)
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Transform of Crystal Structure: F;=F;xF,
reciprocal space
(recip pace) - T(R)

= T(f % f))

Equivalent to the transform of the unit cell contents, F;,
multiplied (sampled) by the transform of the crystal
lattice, F, (reciprocal lattice)

These examples are easy to conceptualize because, In
each case, one of the functions (f, or F,) Is “simple”
(l.e. an array of points or a lattice)
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111.C.6.g Convolution and Multiplication

In the reciprocal lattice, the sampling interval is
reciprocally related to the real space lattice repeat

F,, the transform of the contents of the unit cell, is a
continuous function

F5, the transform of the crystal, is discrete (because F, Is
discrete)

The crystal transform (F;) is the transform of the single
unit cell "sampled" at the reciprocal lattice points

Values of the Fourier transform at the reciprocal lattice
points are called the structure factors (F,))
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1-D lattices give rise to transforms sampled In
only one direction



Effect of Crystal Lattice on Transform
(Transform Sampling)
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Effect of Crystal Lattice on Transform
(Transform Sampling)

1 hand




Effect of Crystal Lattice on Transform
(Transform Sampling)
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Effect of Crystal Lattice on Transform
(Transform Sampling)
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Effect of Crystal Lattice on Transform
(Transform Sampling)
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Effect of Crystal Lattice on Transform
(Transform Sampling)
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1-D lattices give rise to transforms sampled In
only one direction

2-D lattices produce sampling on a 2-D grid or
reciprocal lattice

Example 1: Orthogonal 2-D lattice



Effect of 2-D Crystal Lattice on Transform
(Transform Sampling)

1 hand




Effect of 2-D Crystal Lattice on Transform
(Transform Sampling)

2 x 1 crystal

1




Effect of 2-D Crystal Lattice on Transform

(Transform Sampling)

2 x 2 crystal
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Effect of 2-D Crystal Lattice on Transform
(Transform Sampling)

4 x 4 crystal
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Effect of 2-D Crystal Lattice on Transform

8 x 8 crystal
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Effect of 2-D Crystal Lattice on Transform
(Transform Sampling)

16 x 8 crystal
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1-D lattices give rise to transforms sampled In
only one direction

2-D lattices produce sampling on a 2-D grid or
reciprocal lattice

Example 2: Non-orthogonal 2-D lattice
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Effect of 2-D Crystal Lattice on Transform
(Transform Sampling)

2 X 2 crystal
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Effect of 2-D Crystal Lattice on Transform

(Transform Sampling)

4 x 2 crystal
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Effect of 2-D Crystal Lattice on Transform
(Transform Sampling)

4 x 4 crystal
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Effect of 2-D Crystal Lattice on Transform
(Transform Sampling)

8 x 4 crystal
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Effect of 2-D Crystal Lattice on Transform
(Transform Sampling)

8 x 8 crystal
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Effect of 2-D Crystal Lattice on Transform
(Transform Sampling)

16 x 8 crystal
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Effect of 2-D Crystal Lattice on Transform
(Transform Sampling)

16 x 8 crystal
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If the phase and amplitude (structure factor) at
each point hk in the 2-D reciprocal lattice can be
obtained, the crystal and motif structures can
be solved by mathematical Fourier synthesis
(inverse Fourier transformation)



Diffraction Pattern of N Wide Slits

(Fourier Transform and Convolution Relationships)

Real Space

‘“———mv——‘ M—U-J-M—]—U. | vﬂﬂﬂﬂm
¥* X —— —— | —

slit lattice (real) window finite lattice of slits
- (thick slit) -

From Sherwood, Fig. 7.21, p.255



Diffraction Pattern of N Wide Slits

(Fourier Transform and Convolution Relationships)

Real Space

‘“———mv——‘ M—U-J-M—]—U. | vﬂﬂﬂﬂm
¥* X —— —— | —

slit lattice (real) window finite lattice of slits

S 1

(thick slit)

] r
M

T(slit) | lattice (reciprocal) T(window) FT of finite lattice of slits
sin(x)/x - sin(x)/x

Reciprocal Space

From Sherwood, Fig. 7.21, p.255



[11.C CRYSTALS, SYMMETRY AND DIFFRACTION
111.C.6 Diffraction

KEY CONCEPTS:

- Fourier transform

- Fourier Synthesis and Analysis

- Image formation is a double diffraction process
- Bragg's Law

- Structure factor and Argand diagram

- Convolution and multiplication



[11.C.6 Diffraction
111.C.6.h Other Properties of FTs and Diffraction Patterns

1) Analogy between OD and "Mathematical" FTs
2) Asymmetric / Symmetric Objects / Transforms
3) Reciprocity

4) Resolution

5) Sharpness of Diffraction Spots

6) Geometry, Intensity and Symmetry

7) Projection Theorem

8) Friedel's Law



[11.C.6 Diffraction
111.C.6.h Other Properties of FTs and Diffraction Patterns

Analogy between OD and "Mathematical" FTs

Optical bench is an excellent device for demonstrating
properties of Fourier transforms and diffraction patterns

radiation object lens diffraction image
plane plane



[11.C.6 Diffraction
111.C.6.h Other Properties of FTs and Diffraction Patterns

Analogy between OD and "Mathematical" FTs

Optical Diffraction:
- Incident radiation is laser beam

- Diffraction grating (object) is transparency (e.g. EM
micrograph) or mask
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111.C.6.h Other Properties of FTs and Diffraction Patterns

Asymmetric vs. Symmetric Objects and Their Transforms

Simple, symmetric structures b simple, symmetric transforms

Asymmetric structures b complex transforms

Transforms are like fingerprints:

- Specific object features often give rise to characteristic
features in the transform



Simple Objects and Their Transforms

Single Slit Slit Transform




Simple Objects and Their Transforms

Single Slit Slit Transform
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Simple Objects and Their Transforms

Single Slit Slit Transform

FT




Simple Objects and Their Transforms

Single Slit Slit Transform

FT




Simple Objects and Their Transforms




Simple Objects and Their Transforms

Rectangle Rectangle Transform

16 x 512



Simple Objects and Their Transforms

Rectangle Rectangle Transform

16 x 256




Simple Objects and Their Transforms

Rectangle Rectangle Transform

16 x 128
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Simple Objects and Their Transforms

Rectangle Rectangle Transform

16 x 64
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Simple Objects and Their Transforms

Rectangle

Rectangle Transform
16 x 32
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Simple Objects and Their Transforms

“Rectangle” “Rectangle” Transform

16 x 16
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Simple Objects and Their Transforms

Rectangle Rectangle Transform
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Simple Objects and Their Transforms

Rectangle

Rectangle Transform
16 x 32
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Simple Objects and Their Transforms

Circle Circle Transform

g -




Simple Objects and Their Transforms

Circle Circle Transform




Simple Objects and Their Transforms

Circle Circle Transform




Simple Objects and Their Transforms

Circle Circle Transform

@ FT

Square Square Transform
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Simple Objects and Their Transforms

Square Transform

Square

FT
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[11.C.6 Diffraction
111.C.6.h Other Properties of FTs and Diffraction Patterns

Asymmetric vs. Symmetric Objects and Their Transforms

Simple, symmetric structures b simple, symmetric transforms

Asymmetric structures b complex transforms

Transforms are like fingerprints:

- Specific object features often give rise to characteristic
features in the transform
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Objects with Cyclic Symmetry and Their Transforms
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Objects with Cyclic Symmetry and Their Transforms




[11.C.6 Diffraction
111.C.6.h Other Properties of FTs and Diffraction Patterns

Asymmetric vs. Symmetric Objects and Their Transforms

Structure can be regenerated by back transformation ONLY
If the amplitudes and phases at ALL points of the FT are
available

May be accomplished for:
Visible light (optical reconstruction)
Electrons (electron microscopy)

Can only be achieved by mathematical computation for:
X-rays and neutrons (phases indirectly measured)

Simple inspection of most transforms does NOT directly
lead to a unique determination of structure
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Reciprocity

Dimensions in object (real space) are inversely related
to dimensions in the transform (reciprocal space)
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Reciprocity

Small spacings in object - represented by features spaced
far apart in reciprocal space
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Resolution

Outer regions of FT arise from fine (high resolution) details
In the object

Coarse (low resolution) object features contribute near
the central region of the FT
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Resolution

Low-pass/High-pass filtering

Low-pass: low-resolution features (near center of transform)
are allowed to “pass” through filter and interfere
(resynthesize) at image plane while high
resolution features are removed

High-pass: low resolution Fourier components are removed
(i.e. blocked by filter) while high resolution
Fourier components are allowed to “pass”

through filter and form an image (leads to
accentuation of high resolution features such as edges)
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From Holmes and Blow, Fig. 3, p.120
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Sharpness of Diffraction Spots

Features in the diffraction pattern become sharper as the
number of diffracting objects or the distance between
them increases

Sharpening reflects a situation of more complete, destructive
Interference away from the reciprocal lattice positions
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[11.C.6 Diffraction
111.C.6.h Other Properties of FTs and Diffraction Patterns

1) Analogy between OD and "Mathematical" FTs
2) Asymmetric / Symmetric Objects / Transforms
3) Reciprocity

4) Resolution

5) Sharpness of Diffraction Spots

6) Geometry, Intensity and Symmetry

7) Projection Theorem

8) Friedel's Law
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Transforms are like fingerprints

Asymmetric structures P complex transforms
Simple, symmetric structures b simple, symmetric transforms

Simple inspection of most transforms does NOT directly
lead to a unique determination of structure
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Reciprocity

Dimensions in object (real space) are inversely related
to dimensions in the transform (reciprocal space)
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Sharpness of Diffraction Spots

Features in the diffraction pattern become sharper as the
number of diffracting objects or the distance between
them increases

Sharpening reflects a situation of more complete, destructive
Interference away from the reciprocal lattice positions
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Geometry, Intensity and Symmetry

Geometry and spacings of the crystal and reciprocal lattices obey a
reciprocal relationship K

dsing*
and g* =180- ¢

d = unit cell spacing (a or b)
* =reciprocal lattice spacing (a* or b*)
g = angle between unit cell axes
g* = angle between reciprocal lattice axes

K = constant of diffraction (=1 L)
| = wavelength of monochromatic radiation

L = camera length (distance from specimen to diffraction plane)

d*




111.C.6.h Other Properties of FTs and Diffraction Patterns

Geometry, Intensity and Symmetry

K

d* = —
dsing*

g*=180- g

Real Lattice



111.C.6.h Other Properties of FTs and Diffraction Patterns

Geometry, Intensity and Symmetry

a* A

g*=180- g

 dsing*

b* K/b

a K/a

Real Lattice Reciprocal Lattice
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Geometry, Intensity and Symmetry

The reciprocal lattice edges, of dimensions a* and b*, are respectively
perpendicular to the cell edges b and a

b* K/b

a K/a

a*

Real Lattice Reciprocal Lattice
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Geometry, Intensity and Symmetry

Each spot is indexed according to its position in the reciprocal lattice,
and is considered to arise by diffraction from a set of density (Bragg)
planes/lines in the 3-D/2-D crystal

Motif structure, NOT spacings or geometry of crystal lattice, determine
the intensity distribution in transform
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Spacings and geometry of crystal lattice only determine where the motif
transform is sampled
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Geometry, Intensity and Symmetry

Structural symmetry produces symmetrical intensity
distributions in the transform (aside from Friedel symmetry)

Object rotational
symmetry

Transform rotational
symmetry

n even
n odd

n
2n

One of major reasons why OD Is powerful method for
diagnosing presence of symmetry in biological specimens
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Geometry, Intensity and Symmetry

Screw-axis symmetry in a crystal produces systematic
absences in the transforms
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Geometry, Intensity and Symmetry

Foot Foot Transform
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Geometry, Intensity and Symmetry

Foot pl1 Crystal Foot p1 Crystal Transform
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Geometry, Intensity and Symmetry

Foot pl Crystal Foot pl Crystal Transform




Foot pg Crystal Transform

111.C.6.h Other Properties of FTs and Diffraction Patterns
Geometry, Intensity and Symmetry
Foot pg Crystal
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Geometry, Intensity and Symmetry

Foot pg Crystal

Foot pg Crystal Transform
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Geometry, Intensity and Symmetry

Foot pg Crystal Transform
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111.C.6.h Other Properties of FTs and Diffraction Patterns

Geometry, Intensity and Symmetry

Foot pg Crystal Foot pg Crystal Transform
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Geometry, Intensity and Symmetry

Foot pg Crystal Foot pg Crystal Transform
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111.C.6.h Other Properties of FTs and Diffraction Patterns

Geometry, Intensity and Symmetry

Foot pg Crystal Transform
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Projection Theorem

FT of the projected structure of a 3-D object is equivalent
to a 2-D central section of the 3-D FT of the object

Central section intersects the origin of the 3-D transform
and is perpendicular to the direction of projection

Basis of 3D reconstruction by Fourier methods:

- Several independent views of the projected structure
are recorded and their 2-D transforms calculated to build
up a complete 3-D transform

- 3-D structure is reconstructed from 2-D views by inverse
Fourier transformation of 3-D FT
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Projection Theorem
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Friedel’s Law

Diffraction pattern from the projected structure of a real
object has an inversion center in the intensity distribution

Amplitude at any point in the pattern is identical at a point
equidistant and opposite in direction from the transform
origin: [Fpy | = [Fp . |

Phases at these two points are opposite: a, = -a, 4
For periodic specimens with periodic patterns consisting of

discrete spots (reflections), Friedel related spots are called
Friedel pairs
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Friedel’s Law

Friedel symmetry causes the transform of any real object to
display 2-fold symmetry in the intensity distribution

Object rotational | Transform rotational
symmetry symmetry

n even n
n odd 2N
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Friedel’s Law

Optical diffraction:

Friedel's law generally fails (pattern does not exhibit perfect
inversion symmetry in intensity distribution) because the object is a
photographic transparency which causes irregular
phase shifts of the incident radiation (laser light) as it
passes through the emulsion and backing of the film

Mathematically computed diffraction patterns:

Should have PERFECT Friedel symmetry (if software is

bug-free of course!)
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