III.C CRYSTALS, SYMMETRY AND DIFFRACTION III.C. 6 Diffraction

Diffraction methods provide a powerful way to study molecular structure

X-ray diffraction
Neutron diffraction
Electron diffraction
Optical diffraction
Computed diffraction

III.C. 6 Diffraction

Ultimate goal:

Understand the chemical properties of molecules by determining their atomic structure

Types of chemical bonds (ionic, covalent, or hydrogen)
Bond lengths and angles
Van der Waals radii
Rotations about single bonds
etc.

III.C. 6 Diffraction

Presently, only X-ray and neutron diffraction techniques are routinely capable of revealing the arrangement of atoms in molecular structures

In 1912 von Laue predicted that X-rays should diffract from crystals like light from a diffraction grating (later verified experimentally by Friedrich and Knipping)
W. L. Bragg: developed concept of diffraction from crystal planes and that the diffraction pattern could be used to reveal atomic positions in crystals

Physical principles of X-ray diffraction form the fundamental basis of Fourier image processing techniques

III.C. 6 Diffraction
 III.C.6.a Introduction to Diffraction Theory

Diffraction: non-linear propagation of electromagnetic radiation

- Occurs when an object scatters the incident radiation
- Radiation scattered from different portions of the object interfere both constructively and destructively, producing a diffraction pattern which can be recorded on a photographic emulsion

Recall:

Electrons (in a TEM) are scattered both by the electrons (inelastic scatter) and nuclei (elastic scatter) of specimen atoms

III.C. 6 Diffraction
III.C.6.a Introduction to Diffraction Theory

A characteristic of diffraction: (remember this!)

Each point in the diffraction pattern arises from interference of rays scattered from all irradiated portions of the object

III.C. 6 Diffraction
 III.C.6.a Introduction to Diffraction Theory

Structure determination by diffraction methods:

- Involves measuring or calculating the structure factor (F) at many or all points of the diffraction pattern
- Each F is described by two quantities, an amplitude and a phase

Amplitude:
Strength of interference at a particular point
Phase:
Relative time of arrival of scattered radiation (wave) at a particular point

III.C. 6 Diffraction
 III.C.6.a Introduction to Diffraction Theory

Diffraction facts:

Amplitude is proportional to the square root of the intensity in the recorded pattern

$$
\text { Amplitude } \propto \sqrt{\text { Intensity }}
$$

Photographic film does not record the scattered amplitude, but rather the intensity which is proportional to the amplitude squared: i.e. Intensity $\propto(\text { Amplitude })^{2}$

III.C. 6 Diffraction
 III.C.6.a Introduction to Diffraction Theory

More Diffraction facts:

- Phase information is lost when the diffraction pattern is recorded
- Phases cannot be measured directly from X-ray diffraction photographs

The "Phase Problem"

- Major concern of structure determination using X-ray crystallography
- Necessitates use of e.g. heavy atom, isomorphous replacement, molecular replacement etc. methods

III.C. 6 Diffraction
 III.C.6.a Introduction to Diffraction Theory

X-ray phases could be obtained if it were possible to rediffract (focus) scattered X-rays with a lens to form an image

We can directly visualize objects in electron and light microscopes because electrons and visible photons scattered by specimens can be focused with lenses to form images

III.C. 6 Diffraction
 III.C.6.a Introduction to Diffraction Theory

In the absence of "noise", an image might be considered to contain structural information (amplitudes and phases) in directly interpretable form

Major advantage of image processing:

Provides an objective means to extract reliable structural information from noisy images

$$
\begin{aligned}
& \text { III.C. } 6 \text { Diffraction } \\
& \text { III.C.6.b The Fourier Transform } \\
& \text { Fourier } \\
& \text { Transforms }
\end{aligned}
$$

III.C. 6 Diffraction
 III.C.6.b The Fourier Transform

Mathematically describes the distribution of amplitude and phase in different directions, for all possible directions of the beam incident on the object

Fourier transform of an object is a particular kind of weighted integral of the object

In one-dimension:

$$
F(X)=\int_{-\infty}^{\infty} \rho(x) e^{(2 \pi i x X)} d x
$$

III.C. 6 Diffraction
 III.C.6.b The Fourier Transform

The Fourier transform in 1-D:

$$
F(X)=\int_{-\infty}^{\infty} \rho(x) e^{(2 \pi i x X)} d x
$$

$F(X)=$ the scattering function (diffraction pattern)
$\rho(x)=$ the electron density function (object)
Integration is over all density values in the structure

III.C. 6 Diffraction

III.C.6.b The Fourier Transform

$\rho(x)$: the object

III.C. 6 Diffraction
 III.C.6.b The Fourier Transform

The Fourier transform in 1-D:

$$
F(X)=\int_{-\infty}^{\infty} \rho(x) e^{(2 \pi i x X)} d x
$$

For sampled (discrete) data:

$$
F(X)=\sum_{x} \rho(x) e^{(2 \pi i x X)}
$$

III.C. 6 Diffraction

III.C.6.b The Fourier Transform

$\rho(x)$: the object

III.C. 6 Diffraction

III.C.6.b The Fourier Transform
$\rho(x)$: the object sampled

III.C. 6 Diffraction

III.C.6.b The Fourier Transform
$\rho(x)$: the object sampled

III.C. 6 Diffraction
III.C.6.b The Fourier Transform

$\rho(x)$: the object sampled

III.C. 6 Diffraction

III.C.6.b The Fourier Transform
$\rho(x)$: the object sampled

III.C. 6 Diffraction

III.C.6.b The Fourier Transform

$\rho(x)$: the object sampled

III.C. 6 Diffraction
III.C.6.b The Fourier Transform

$\rho(x)$: the object sampled

III.C. 6 Diffraction
III.C.6.b The Fourier Transform

$\rho(x)$: the object sampled

III.C. 6 Diffraction

III.C.6.b The Fourier Transform

$\rho(x)$: the object sampled

III.C CRYSTALS, SYMMETRY AND DIFFRACTION

 III.C. 6 Diffraction KEY CONCEPTS:- Diffraction methods provide a powerful means to study and determine structure
- First goal of diffraction methods is to determine structure factor amplitudes and phases; from these we can reconstruct structure
- The Fourier transform is just a different way to represent an object
- Any periodic object can be represented mathematically as a summation of sinusoidal waves (Fourier synthesis)
- Image formation is considered a double diffraction process

III.C CRYSTALS, SYMMETRY AND DIFFRACTION

 III.C. 6 Diffraction
And some more KEY CONCEPTS:

- Bragg's Law: visualizes diffraction as arising from reflection of radiation from planes in crystals
- Structure factors are complex numbers
- Concepts of convolution and multiplication (sampling) help us understand fundamental properties of Fourier transforms

III.C. 6 Diffraction
 III.C.6.b The Fourier Transform

In one-dimension:

$$
F(X)=\int_{-\infty}^{\infty} \rho(x) e^{(2 \pi i x X)} d x
$$

For sampled (discrete) data:

$$
F(X)=\sum_{x} \rho(x) e^{(2 \pi i x X)}
$$

III.C. 6 Diffraction
III.C.6.b The Fourier Transform

Shorthand Notations:

$$
F=\text { Fourier transform of } \rho
$$

$T=$ Forward Fourier transform operation
$F=T(\rho)$
III.C. 6 Diffraction
III.C.6.b The Fourier Transform

Inverse relationship: (property of FTs)
Recall:

$$
F(X)=\int_{-\infty}^{\infty} \rho(x) e^{(2 \pi i x X)} d x
$$

$F(X)$ is the forward transform of $\rho(x)$

$$
\rho(x)=\int_{-\infty}^{\infty} F(X) e^{(-2 \pi i x X)} d X
$$

thus ρ is the inverse transform of F

III.C. 6 Diffraction
 III.C.6.b The Fourier Transform

Inverse relationship: (property of FTs)

ρ is the inverse transform of F
In shorthand notation:

$$
\rho=T^{-1}(F)=T^{-1}(T(\rho))
$$

$T^{-1}=$ inverse (reverse, back) Fourier transform operation

III.C. 6 Diffraction

III.C.6.b The Fourier Transform

Inversion theorem:

The Fourier transform of the Fourier transform of an object is the original object

Theorem is analogous to Abbe's treatment of image formation which is considered to be a double-diffraction process

We will return to this idea a bit later...

III.C. 6 Diffraction
 III.C.6.c Fourier Synthesis

Any periodic function may be mathematically represented by a summation of a series of sinusoidal waves

III.C. 6 Diffraction
 III.C.6.c Fourier Synthesis

Any periodic function may be mathematically represented by a summation of a series of sinusoidal waves

III.C. 6 Diffraction
 III.C.6.c Fourier Synthesis

Any periodic function may be mathematically represented by a summation of a series of sinusoidal waves

In one-dimension, the Fourier synthesis can be expressed:

$$
\rho(x)=\sum_{n=-\infty}^{\infty} A_{n} \cos (2 \pi n x / a)
$$

III.C. 6 Diffraction
 III.C.6.c Fourier Synthesis

$$
\rho(x)=\sum_{n=-\infty}^{\infty} A_{n} \cos (2 \pi n x / a)
$$

III.C. 6 Diffraction
 III.C.6.c Fourier Synthesis

$$
\rho(x)=\sum_{n=-\infty}^{\infty} A_{n} \cos (2 \pi n x / a)
$$

III.C. 6 Diffraction
 III.C.6.c Fourier Synthesis

$\rho(x)=\sum^{\infty} A_{n} \cos (2 \pi n x / a)$
 $n=-\infty$

$\rho(x) \quad=1-D$ density function (object)
$x \quad=$ coordinate of a point in the object
a = repeat distance of 1-D periodic object
$A_{n} \quad=$ Fourier coefficient (amplitude term) for wave number n
$n \quad=$ wave number (frequency) or cycles per repeat distance a
$(2 \pi n x / a)=$ phase term (position of wave with respect to a fixed origin point in the repeating structure)

$$
\begin{gathered}
\text { III.C.6 Diffraction } \\
\text { III.C.6.c Fourier Synthesis } \\
\rho(x)=\sum_{n=-\infty}^{\infty} A_{n} \cos (2 \pi n x / a) \\
\rho(x)=\text { object } \\
x \quad=\text { coordinate of point in object } \\
a(x)
\end{gathered}
$$

III.C. 6 Diffraction
III.C.6.c Fourier Synthesis

$$
\begin{array}{ll}
\rho(x) & =\text { object } \\
x & =\text { coordinate of point in object } \\
a & =\text { repeat distance of 1-D periodic object }
\end{array}
$$

III.C. 6 Diffraction
III.C.6.c Fourier Synthesis

$$
\begin{array}{ll}
\rho(x) & =\text { object } \\
x & =\text { coordinate of point in object } \\
a & =\text { repeat distance of 1-D periodic object }
\end{array}
$$

III.C. 6 Diffraction

III.C.6.c Fourier Synthesis

$$
\rho(x)=\sum_{n=-\infty}^{\infty} A_{n} \cos (2 \pi n x / a)
$$

$A_{n} \quad=$ Fourier coefficient (amplitude term) for wave number n
$n \quad=$ wave number or cycles per repeat distance a
$(2 \pi n x / a)=$ phase term (position of wave with respect to origin point)

From Eisenberg \& Crothers, Fig. 17-14, p. 828

III.C. 6 Diffraction
 III.C.6.c Fourier Synthesis

Fourier Synthesis:

- Mathematical combination of the waves to produce the periodic function

Fourier Analysis:

- Opposite process
- Decomposition of the periodic function into its component waves
- Example: analyzing the sound wave harmonics of a musical instrument

III.C. 6 Diffraction
III.C.6.c Fourier Synthesis

Analogy between Music and Structure

tone $=\sum$ harmonics

structure $=\sum$ structure factors
III.C. 6 Diffraction
III.C.6.c Fourier Synthesis

Fourier Synthesis of 1-D Periodic Object

From Eisenberg \& Crothers, Fig. 17-14, p. 828

Superposition of Waves to Represent 1-D "Crystal"

From Eisenberg \& Crothers, Fig. 17-15, p. 829

Superposition of Waves to Represent 1-D "Crystal"

From Eisenberg \& Crothers, Fig. 17-15, p. 829

Summation of 2D Waves to Produce 2D "Electron Density"

From Eisenberg \& Crothers, Fig. 17-15c, p. 830
III.C CRYSTALS, SYMMETRY AND DIFFRACTION

REVIEW

Structure determination by diffraction methods:

- Involves measuring or calculating the structure factor (F) at many or all points of the diffraction pattern
- Each F is described by an amplitude and a phase

Amplitude:
Strength of interference at a particular point
Phase:
Relative time of arrival of scattered radiation (wave) at a particular point
III.C CRYSTALS, SYMMETRY AND DIFFRACTION

REVIEW

The Fourier Transform

Mathematically describes the distribution of amplitude and phase in different directions, for all possible directions of the beam incident on the object

Fourier transform of an object is a particular kind of weighted integral of the object

In one-dimension:

$$
F(X)=\int_{-\infty}^{\infty} \rho(x) e^{(2 \pi i x X)} d x
$$

III.C CRYSTALS, SYMMETRY AND DIFFRACTION

REVIEW

The Fourier Transform

The Fourier transform in 1-D:

$$
F(X)=\int_{-\infty}^{\infty} \rho(x) e^{(2 \pi i x X)} d x
$$

$F(X)=$ the scattering function (diffraction pattern)
$\rho(x)=$ the electron density function (object)
Integration is over all density values in the structure
III.C CRYSTALS, SYMMETRY AND DIFFRACTION

REVIEW

The Fourier Transform

The Fourier transform in 1-D:

$$
F(X)=\int_{-\infty}^{\infty} \rho(x) e^{(2 \pi i x X)} d x
$$

For sampled (discrete) data:

$$
F(X)=\sum_{x} \rho(x) e^{(2 \pi i x X)}
$$

III.C CRYSTALS, SYMMETRY AND DIFFRACTION REVIEW

The Fourier Transform

- Goal of diffraction methods: determine structure factor amplitudes and phases; from these we can reconstruct structure
- The Fourier transform is just a different way to represent an object
III.C CRYSTALS, SYMMETRY AND DIFFRACTION REVIEW
Inverse relationship: (property of FTs)

$$
F(X)=\int_{-\infty}^{\infty} \rho(x) e^{(2 \pi i x X)} d x
$$

$F(X)$ is the forward transform of $\rho(x)$

$$
\rho(x)=\int_{-\infty}^{\infty} F(X) e^{(-2 \pi i x X)} d X
$$

thus ρ is the inverse transform of F
III.C CRYSTALS, SYMMETRY AND DIFFRACTION

REVIEW

Inverse relationship: (property of FTs)
 $-\infty$
ρ is the inverse transform of F

$$
\rho=T^{-1}(F)=T^{-1}(T(\rho))
$$

III.C CRYSTALS, SYMMETRY AND DIFFRACTION

REVIEW

Fourier Synthesis

- Any periodic object can be represented mathematically as a summation of sinusoidal waves

In one-dimension, the Fourier synthesis can be expressed:

$$
\rho(x)=\sum_{n=-\infty}^{\infty} A_{n} \cos (2 \pi n x / a)
$$

III.C CRYSTALS, SYMMETRY AND DIFFRACTION REVIEW

Fourier Synthesis

$$
\rho(x)=\sum_{n=-\infty}^{\infty} A_{n} \cos (2 \pi n x / a)
$$

From Eisenberg \& Crothers, Fig. 17-14, p. 828
III.C CRYSTALS, SYMMETRY AND DIFFRACTION

REVIEW

Fourier Synthesis:

- Mathematical combination of the waves to produce the periodic function

Fourier Analysis:

- Opposite process
- Decomposition of the periodic function into its component waves
III.C CRYSTALS, SYMMETRY AND DIFFRACTION

REVIEW

From Eisenberg \& Crothers, Fig. 17-15, p. 829
III.C CRYSTALS, SYMMETRY AND DIFFRACTION REVIEW

$$
\begin{gathered}
\text { OK that's } \\
\text { enougfreview }
\end{gathered}
$$

III.C. 6 Diffraction

III.C.6.d Image Formation as a Double Diffraction Process

According to Abbe's theory, image formation is a twostage, double-diffraction process

An image is the diffraction pattern of the diffraction pattern of an object

III.C. 6 Diffraction

III.C.6.d Image Formation as a Double Diffraction Process

1st stage of image formation

Collimated (parallel) beam of rays incident on the object is scattered and the interference pattern (Fraunhofer diffraction pattern) is brought to focus at the back focal plane of the lens

III.C. 6 Diffraction

III.C.6.d Image Formation as a Double Diffraction Process

1st stage of image formation
1st stage sometimes referred to as the forward Fourier transformation
Intensity distribution of the recorded diffraction pattern of an object is proportional to the square of the Fourier transform of the object

Terms "transform" and "diffraction pattern" are often used interchangeably, but strictly speaking they are not equivalent

III.C. 6 Diffraction

III.C.6.d Image Formation as a Double Diffraction Process

FT
1st stage of image formation
A lens (essential for image formation) focuses the diffraction pattern at a finite distance from the object (at back focal plane of lens)

If remove lens, no image forms, but instead Fresnel diffraction patterns form at finite distances from the object and the Fraunhofer diffraction pattern forms at infinity (large distance relative to the object size or wavelength of radiation used)

In X-ray diffraction experiments, there is no lens to focus the X-rays

III.C. 6 Diffraction

III.C.6.d Image Formation as a Double Diffraction Process

Occurs when the scattered radiation passes beyond the back focal plane of the lens and interferes (recombines) to form an image

Called back or inverse Fourier transformation stage
Recall: Image cannot exactly represent the object because some scattered rays never enter the lens and cannot be focused at the image plane

III.C. 6 Diffraction

III.C.6.d Image Formation as a Double Diffraction Process

Image formation analogous to:

Fourier analysis in first stage
Fourier synthesis in second stage

III.C. 6 Diffraction

III.C.6.d Image Formation as a Double Diffraction Process

Fourier image analysis is a powerful method for analyzing a wide variety of periodic specimens because:

- Separates processing of electron micrograph images into two stages
- Formation of diffraction pattern in 1st stage reveals structural information in a straightforward manner and conveniently and objectively separates most of the signal and noise components in the image
-Transform may then be manipulated and subsequently back-transformed in 2nd stage to produce a noise-filtered, reconstructed image
III.C CRYSTALS, SYMMETRY AND DIFFRACTION III.C. 6 Diffraction
III.C.6.e Bragg Diffraction

$\mathcal{B r a g g}$'s Law

From Vainshtein, Fig. 4.2, p. 224

III.C. 6 Diffraction
 III.C.6.e Bragg Diffraction

Diffraction can be conceptualized as arising from the reflection of radiation from planes of electron density in the 3D crystal (or lines in a 2D crystal)

These planes are imaginary parallel planes within crystals

Each set of planes is identified by three Miller indices, $\boldsymbol{h k l}$, which are the reciprocals of the intercepts, in units of cell edge lengths, that the plane makes with the axes of the unit cell

III.C. 6 Diffraction
 III.C.6.e Bragg Diffraction
 Miller Indices of Lattice Planes in a Crystal

hk(2-D), hkl(3-D):
The reciprocals of the intercepts, in units of cell edge lengths, that the plane/line makes with the axes of the unit cell

III.C. 6 Diffraction
 III.C.6.e Bragg Diffraction

Diffraction from the $h k l$ set of planes, separated a distance d_{hk}, only occurs for certain orientations of the incident radiation according to the Bragg relation:

$$
n \lambda=2 d_{h k l} \sin \theta_{? ? ?}
$$

$n=$ integer
$\lambda=$ wavelength of incident radiation
$d_{h k l}=$ crystal lattice spacing between the [hkJ] set of crystal planes
$\theta_{h k l}=$ angle of incidence and also of reflection
III.C. 6 Diffraction
III.C.6.e Bragg Diffraction

Bragg's Law

From Vainshtein, Fig. 4.2, p. 224

III.C. 6 Diffraction
III.C.6.e Bragg Diffraction

Intensity of each $h k /$ reflection is proportional to the distribution of electron density in the hkl planes

In some planes the density may be evenly distributed and the corresponding reflection will be relatively weak

In others, where the density is concentrated in one region between the planes, the corresponding reflection will be strong

III.C. 6 Diffraction
III.C.6.e Bragg Diffraction

Intensity of each $h k /$ reflection is proportional to the distribution of electron density in the hkl planes

In some planes the density may be evenly distributed and the corresponding reflection will be relatively weak

In others, where the density is concentrated in one region between the planes, the corresponding reflection will be strong

III.C. 6 Diffraction

III.C.6.e Bragg Diffraction

2D Crystal of Hands and Corresponding Reciprocal Lattice

Two Bragg-type "planes" (lines here in 2-D) are depicted in this 2-D crystal of hands
$[1,2]$ and $[2,3]$ are shown

III.C. 6 Diffraction

III.C.6.e Bragg Diffraction

2D Crystal of Hands and Corresponding Reciprocal Lattice

III.C. 6 Diffraction

III.C.6.e Bragg Diffraction

2D Crystal of Hands and Corresponding Reciprocal Lattice

Density that lies between the dashed lines diffract at the reciprocal lattice point labeled [1,2] (and also its Friedel mate, [-1,-2], not shown)

Spacing (perpendicular distance) between the lines is inversely proportional to the distance of the [1,2] reciprocal lattice point from the origin

Relative to the transform origin (where $\theta_{\text {hkl }}=0^{\circ}$, which corresponds to direction of unscattered radiation), the reciprocal lattice point appears in a direction normal to the set of lines

III.C. 6 Diffraction
 III.C.6.e Bragg Diffraction

For 2D, periodic structures, each Friedel pair of spots arises from a set of fringes (sinusoidal density waves) of particular spacing (frequency) and orientation in the crystal

The so-called Miller index of each spot corresponds to the two wave numbers (h and k) which describe the number of wave cycles per repeat in the a and b directions.

For diffraction from 3D crystals, the Miller index of each spot is assigned three wave numbers ($h, \boldsymbol{k}, \boldsymbol{l}$) corresponding to the number of wave cycles per repeat in the three unit cell directions (a, b, c)

III.C.6.e Bragg Diffraction

Each spot or reflection in the diffraction pattern may be mathematically represented in real space as a plane wave whose amplitude is proportional to the square root of the spot intensity and whose phase is measured relative to a particular origin point in the crystal (e.g. the unit cell origin).

When the amplitudes and phases (structure factors, $F_{h k l}$) of all spots in the 3D transform are known, the corresponding real space density waves can be mathematically summed (Fourier synthesis) to reconstruct the 3D object density

$$
\text { In 1D: } \rho(x)=\sum_{n=-\infty}^{\infty} A_{n} \cos (2 \pi n x / a)
$$

III.C CRYSTALS, SYMMETRY AND DIFFRACTION

 III.C. 6 Diffraction
KEY CONCEPTS:

- Any periodic object can be represented mathematically as a summation of sinusoidal waves (Fourier synthesis)
- Image formation is considered a double diffraction process
- Bragg's Law: visualizes diffraction as arising from reflection of radiation from planes in crystals
- Structure factors are complex numbers
- Concepts of convolution and multiplication (sampling) help us understand fundamental properties of Fourier transforms
III.C CRYSTALS, SYMMETRY AND DIFFRACTION
III.C. 6 Diffraction
III.C.6.f Structure Factor
Structure
Factor

III.C. 6 Diffraction
 III.C.6.f Structure Factor

The structure factor describes the scattering from all atoms of the unit cell for a particular Bragg reflection

Each diffracted ray, or reflection, is described by one structure factor, $F_{h k l}$
$F_{h k l}$ is a complex number whose magnitude (amplitude) is proportional to the square root of the intensity of the $h \mathrm{kl}$ reflection

Each structure factor may be regarded as a sum of the contributions of the radiation scattered in the same direction from all atoms within the unit cell

III.C. 6 Diffraction
 III.C.6.f Structure Factor

For an object with \boldsymbol{n} atoms, the structure factor equation is:

$$
F_{h k l}=\sum_{j=1}^{n} f_{j} \exp \left[2 \pi i\left(h x_{j}+k y_{j}+l z_{j}\right)\right]
$$

$f_{j}=$ atomic scattering factor for atom j
$=$ ratio of amplitude scattered by the atom amplitude scattered by a single electron
= atomic number at zero scattering angle
< atomic number at larger scattering angles
$h k l=$ particular set of diffracting planes
$x_{j} y_{j} z_{j}=$ fractional unit cell coordinates for atom j in the unit cell

III.C. 6 Diffraction
 III.C.6.f Structure Factor

$$
F_{h k l}=\sum_{j=1}^{n} f_{j} \exp \left[2 \pi i\left(h x_{j}+k y_{j}+l z_{j}\right)\right]
$$

Recall: $\mathrm{e}^{i \theta}=\cos \theta+i \sin \theta$, so above can be rewritten:

$$
\begin{aligned}
F_{h k l} & =\sum_{j=1}^{n} f_{j}\left\{\cos \left[2 \pi\left(h x_{j}+k y_{j}+l z_{j}\right)\right]+i \sin \left[2 \pi\left(h x_{j}+k y_{j}+l z_{j}\right)\right]\right\} \\
& =\sum_{j=1}^{n} f_{j} \cos \left[2 \pi\left(h x_{j}+k y_{j}+l z_{j}\right)\right]+i \sum_{j=1}^{n} f_{j} \sin \left[2 \pi\left(h x_{j}+k y_{j}+l z_{j}\right)\right] \\
& =A_{h k l}+i B_{h k l}
\end{aligned}
$$

Thus, F_{hkl} is a complex quantity, with real $\left(A_{h k l}\right)$ and imaginary ($B_{h k}$) parts

III.C. 6 Diffraction
 III.C.6.f Structure Factor
 Argand Diagram

A convenient way to depict $F_{h k l}$
$F_{h k l}$ is plotted as a vector quantity with: horizontal axis = real axis vertical axis = imaginary axis

Vector $F_{h k l}$ makes an angle $\alpha_{h k l}$ with respect to real axis

$F_{\mathrm{hkl}}=$ vector sum of $A_{\text {hkl }}$ (real component) and $B_{\text {hkl }}$ (imaginary component)
Magnitudes of vectors $A_{h k \mid}$ and $B_{h k \mid}$ are: $\left|F_{h k \mid}\right| \cos \left(\alpha_{h k}\right)$ and $\left|F_{h k \mid}\right| \sin \left(\alpha_{h k \mid}\right)$

III.C. 6 Diffraction
 III.C.6.f Structure Factor

Structure factor amplitude (modulus or magnitude of $F_{h k \mid}$): $\left|F_{h k l}\right|$

$$
\left|F_{h k l}\right|=\left[\left(A_{h k l}\right)^{2}+\left(B_{h k l}\right)^{2}\right]^{1 / 2}
$$

Structure factor phase: $\alpha_{h k l}$

Since $F_{h k l}=A_{h k l}+i B_{h k l}$

$$
\begin{aligned}
& =\underbrace{\left|F_{h k \mid}\right| \cos \left(\alpha_{h k l}\right)}_{\text {real }}+\mid \underbrace{F_{h k \mid} \mid \sin \left(\alpha_{h k}\right)}_{\text {imaginary }} \\
& =\left|F_{h k \mid}\right| \exp \left(i \alpha_{h k k}\right)
\end{aligned}
$$

III.C. 6 Diffraction
 III.C.6.f Structure Factor

For a 3D structure with continuous density, $\rho(x y z)$, the structure factor equation becomes:

$$
F_{h k l}=V \iiint_{\rho(x y z) \exp (2 \pi i[h x+k y+\mid z]) d x d y d z, ~}
$$

Integration is over the entire unit cell volume, V.

Reemphasizes a property of Fourier transforms: Every point in the object contributes to every point in the diffraction pattern
III.C CRYSTALS, SYMMETRY AND DIFFRACTION III.C. 6 Diffraction
III.C.6.g Convolution and Multiplication

$$
\begin{aligned}
& \text { - Convolution } \\
& \text { - Multiplication }
\end{aligned}
$$

III.C. 6 Diffraction
 III.C.6.g Convolution and Multiplication

These concepts provide a fundamental basis for understanding diffraction from crystalline objects

According to Holmes and Blow (1965), convolution of two functions can be described in the following way:
"Set down the origin of the first function in every possible position of the second, multiply the value of the first function in each position by the value of the second at that point and take the sum of all such possible operations."

Sounds simple enough...right?
Well, sort of...especially if one function is "simple"

III.C. 6 Diffraction
 III.C.6.g Convolution and Multiplication

Mathematical expression for convolution:

$$
c(u)=\int_{-\infty}^{\infty} f(x) g(u-x) d x
$$

This is known as the convolution of $f(x)$ and $g(x)$, and may be written in shorter form as:

$$
c(u)=f(x) * g(x)
$$

III.C. 6 Diffraction
 III.C.6.g Convolution and Multiplication

Convolution of $f(x)$, an array of δ functions, with $g(x)$, an arbitrary function

III.C. 6 Diffraction

III.C.6.g Convolution and Multiplication

$$
c(u)=f(x) * g(x) \quad c(u)=\int_{-\infty}^{\infty} f(x) g(u-x) d x
$$

III.C. 6 Diffraction

III.C.6.g Convolution and Multiplication

$$
c(u)=f(x) * g(x) \quad c(u)=\int_{-\infty}^{\infty} f(x) g(u-x) d x
$$

III.C. 6 Diffraction

III.C.6.g Convolution and Multiplication

$$
c(u)=f(x) * g(x) \quad c(u)=\int^{\infty} f(x) g(u-x) d x
$$

III.C. 6 Diffraction

III.C.6.g Convolution and Multiplication

$$
c(u)=f(x) * g(x) \quad c(u)=\int_{-\infty}^{\infty} f(x) g(u-x) d x
$$

$c(u)$

III.C. 6 Diffraction

III.C.6.g Convolution and Multiplication

$$
c(u)=f(x) * g(x) \quad c(u)=\int_{-\infty}^{\infty} f(x) g(u-x) d x
$$

$c(u)$

III.C. 6 Diffraction

III.C.6.g Convolution and Multiplication

$$
c(u)=f(x) * g(x) \quad c(u)=\int_{-\infty}^{\infty} f(x) g(u-x) d x
$$

III.C. 6 Diffraction

III.C.6.g Convolution and Multiplication

$$
c(u)=f(x) * g(x) \quad c(u)=\int_{-\infty}^{\infty} f(x) g(u-x) d x
$$

$f(x)$

III.C. 6 Diffraction

III.C.6.g Convolution and Multiplication

$$
c(u)=f(x) * g(x) \quad c(u)=\int_{-\infty}^{\infty} f(x) g(u-x) d x
$$

$f(x)$

III.C. 6 Diffraction

III.C.6.g Convolution and Multiplication

$$
c(u)=f(x) * g(x) \quad c(u)=\int_{-\infty}^{\infty} f(x) g(u-x) d x
$$

$f(x)$

$g(-x)$

$c(u)$

III.C. 6 Diffraction

III.C.6.g Convolution and Multiplication

$$
c(u)=f(x) * g(x) \quad c(u)=\int_{-\infty}^{\infty} f(x) g(u-x) d x
$$

$f(x)$

$g(-x)$

$c(u)$

III.C. 6 Diffraction

III.C.6.g Convolution and Multiplication

$$
c(u)=f(x) * g(x) \quad c(u)=\int_{-\infty}^{\infty} f(x) g(u-x) d x
$$

$f(x)$

$g(-x)$

$c(u)$

III.C. 6 Diffraction

III.C.6.g Convolution and Multiplication

$$
c(u)=f(x) * g(x) \quad c(u)=\int_{-\infty}^{\infty} f(x) g(u-x) d x
$$

$f(x)$

$g(-x)$

$c(u)$

III.C. 6 Diffraction

III.C.6.g Convolution and Multiplication

$$
c(u)=f(x) * g(x) \quad c(u)=\int_{-\infty}^{\infty} f(x) g(u-x) d x
$$

$f(x)$

$g(-x)$

$c(u)$

III.C. 6 Diffraction

III.C.6.g Convolution and Multiplication

$$
c(u)=f(x) * g(x) \quad c(u)=\int_{-\infty}^{\infty} f(x) g(u-x) d x
$$

$f(x)$

$g(-x)$

$c(u)$

III.C. 6 Diffraction

III.C.6.g Convolution and Multiplication

$$
c(u)=f(x) * g(x) \quad c(u)=\int_{-\infty}^{\infty} f(x) g(u-x) d x
$$

$f(x)$

$g(-x)$

$c(u)$

III.C. 6 Diffraction

III.C.6.g Convolution and Multiplication

$$
c(u)=f(x) * g(x) \quad c(u)=\int_{-\infty}^{\infty} f(x) g(u-x) d x
$$

$f(x)$

$g(-x)$

$c(u)$

III.C. 6 Diffraction

III.C.6.g Convolution and Multiplication

$$
c(u)=f(x) * g(x) \quad c(u)=\int_{-\infty}^{\infty} f(x) g(u-x) d x
$$

$c(u)$

III.C. 6 Diffraction

III.C.6.g Convolution and Multiplication

$$
c(u)=f(x) * g(x) \quad c(u)=\int^{\infty} f(x) g(u-x) d x
$$

$c(u)$

III.C. 6 Diffraction

III.C.6.g Convolution and Multiplication

$$
c(u)=f(x) * g(x) \quad c(u)=\int_{-\infty}^{\infty} f(x) g(u-x) d x
$$

$c(u)$

III.C. 6 Diffraction

III.C.6.g Convolution and Multiplication

$$
c(u)=f(x) * g(x) \quad c(u)=\int_{-\infty}^{\infty} f(x) g(u-x) d x
$$

$c(u)$

III.C. 6 Diffraction

III.C.6.g Convolution and Multiplication

$$
c(u)=f(x) * g(x) \quad c(u)=\int_{-\infty}^{\infty} f(x) g(u-x) d x
$$

$c(u)$

III.C. 6 Diffraction

III.C.6.g Convolution and Multiplication

$$
c(u)=f(x) * g(x) \quad c(u)=\int_{-\infty}^{\infty} f(x) g(u-x) d x
$$

III.C. 6 Diffraction

III.C.6.g Convolution and Multiplication

$$
c(u)=f(x) * g(x) \quad c(u)=\int_{-\infty}^{\infty} f(x) g(u-x) d x
$$

$f(x)$

III.C. 6 Diffraction

III.C.6.g Convolution and Multiplication

$$
c(u)=f(x) * g(x) \quad c(u)=\int_{-\infty}^{\infty} f(x) g(u-x) d x
$$

III.C. 6 Diffraction

III.C.6.g Convolution and Multiplication

$$
c(u)=f(x) * g(x) \quad c(u)=\int_{-\infty}^{\infty} f(x) g(u-x) d x
$$

$f(x)$

$g(-x)$

III.C. 6 Diffraction

III.C.6.g Convolution and Multiplication

$$
c(u)=f(x) * g(x) \quad c(u)=\int_{-\infty}^{\infty} f(x) g(u-x) d x
$$

III.C. 6 Diffraction

III.C.6.g Convolution and Multiplication

$$
c(u)=f(x) * g(x) \quad c(u)=\int_{-\infty}^{\infty} f(x) g(u-x) d x
$$

III.C. 6 Diffraction

III.C.6.g Convolution and Multiplication

$$
c(u)=f(x) * g(x) \quad c(u)=\int_{-\infty}^{\infty} f(x) g(u-x) d x
$$

$f(x)$

III.C. 6 Diffraction

III.C.6.g Convolution and Multiplication

$$
c(u)=f(x) * g(x) \quad c(u)=\int_{-\infty}^{\infty} f(x) g(u-x) d x
$$

$g(-x)$

III.C. 6 Diffraction

III.C.6.g Convolution and Multiplication

$$
c(u)=f(x) * g(x) \quad c(u)=\int_{-\infty}^{\infty} f(x) g(u-x) d x
$$

$g(-x)$

$c(u)$

III.C. 6 Diffraction

III.C.6.g Convolution and Multiplication

$$
c(u)=f(x) * g(x) \quad c(u)=\int_{-\infty}^{\infty} f(x) g(u-x) d x
$$

III.C. 6 Diffraction

III.C.6.g Convolution and Multiplication

$$
c(u)=f(x) * g(x) \quad c(u)=\int_{-\infty}^{\infty} f(x) g(u-x) d x
$$

$g(-x)$
$c(u)$

III.C. 6 Diffraction

III.C.6.g Convolution and Multiplication

$$
c(u)=f(x) * g(x) \quad c(u)=\int_{-\infty}^{\infty} f(x) g(u-x) d x
$$

$f(x)$

$g(-x)$

III.C. 6 Diffraction
 III.C.6.g Convolution and Multiplication

Convolution of hand and 2D lattice produces 2D crystal of hands

III.C. 6 Diffraction
III.C.6.g Convolution and Multiplication Convolution of Duck and 2D Lattice Produces 2D Crystal of Ducks

f_{2}

III.C. 6 Diffraction
 III.C.6.g Convolution and Multiplication

Convolution Theorem:

Provides a precise way to describe the relationship between objects (real space) and transforms (reciprocal space)

The Fourier transform of the convolution of two functions is the product of their Fourier transforms

$$
T(f * g)=F \times G
$$

Symbols: * = convolution operation X = multiplication operation
f and g represent two separate functions
F and G are the respective Fourier transforms

III.C. 6 Diffraction
 III.C.6.g Convolution and Multiplication

Convolution Theorem:

The Fourier transform of the convolution of two functions is the product of their Fourier transforms

$$
T(f * g)=F \times G
$$

The converse relationship also holds:
The Fourier transform of the product of two functions is equal to the convolution of the transforms of the individual functions

$$
T(f \times g)=F * G
$$

III.C. 6 Diffraction
 III.C.6.g Convolution and Multiplication

Crystal Structure: $f_{3}=f_{1} * f_{2}$ ($f_{1}=$ unit cell contents; $f_{2}=$ real space lattice) (real space)

Equivalent to the convolution of the contents of the unit cell $\left(f_{1}\right)$ with a finite lattice $\left(f_{2}\right)$

The above equation can also be written as:

$$
\begin{aligned}
& f_{3}=T^{-1}\left(F_{3}\right) \\
& f_{3}=T^{-1}\left(F_{1} \times F_{2}\right)
\end{aligned}
$$

III.C. 6 Diffraction
 III.C.6.g Convolution and Multiplication

$$
\begin{aligned}
& \text { Transform of Crystal Structure: } \quad F_{3}=F_{1} \times F_{2} \\
& \text { (reciprocal space) } \\
& F_{3}=F_{1} \times F_{2} \\
& =T\left(f_{3}\right) \\
& =T\left(f_{1} * f_{2}\right)
\end{aligned}
$$

Equivalent to the transform of the unit cell contents, F_{1}, multiplied (sampled) by the transform of the crystal lattice, F_{2} (reciprocal lattice)

These examples are easy to conceptualize because, in each case, one of the functions (f_{2} or F_{2}) is "simple" (i.e. an array of points or a lattice)

III.C. 6 Diffraction
 III.C.6.g Convolution and Multiplication

In the reciprocal lattice, the sampling interval is reciprocally related to the real space lattice repeat
F_{1}, the transform of the contents of the unit cell, is a continuous function
F_{3}, the transform of the crystal, is discrete (because F_{2} is discrete)

The crystal transform $\left(F_{3}\right)$ is the transform of the single unit cell "sampled" at the reciprocal lattice points

Values of the Fourier transform at the reciprocal lattice points are called the structure factors $\left(F_{h k}\right)$

III.C. 6 Diffraction
 III.C.6.g Convolution and Multiplication

1-D lattices give rise to transforms sampled in only one direction

Effect of Crystal Lattice on Transform (Transform Sampling)

Effect of Crystal Lattice on Transform (Transform Sampling)

1 hand

Effect of Crystal Lattice on Transform (Transform Sampling)

Effect of Crystal Lattice on Transform (Transform Sampling)

Effect of Crystal Lattice on Transform (Transform Sampling)

8 hands

Effect of Crystal Lattice on Transform (Transform Sampling)

16 hands

III.C. 6 Diffraction
 III.C.6.g Convolution and Multiplication

1-D lattices give rise to transforms sampled in only one direction

2-D lattices produce sampling on a 2-D grid or reciprocal lattice

Example 1: Orthogonal 2-D lattice

Effect of 2-D Crystal Lattice on Transform (Transform Sampling)

1 hand
\%

Effect of 2-D Crystal Lattice on Transform (Transform Sampling)

2×1 crystal

Effect of 2-D Crystal Lattice on Transform (Transform Sampling)

2×2 crystal

Effect of 2-D Crystal Lattice on Transform (Transform Sampling)

4×4 crystal

Effect of 2-D Crystal Lattice on Transform (Transform Sampling)

8×8 crystal
"x"M"M

Effect of 2-D Crystal Lattice on Transform (Transform Sampling)

16×8 crystal

III.C. 6 Diffraction
 III.C.6.g Convolution and Multiplication

1-D lattices give rise to transforms sampled in only one direction

2-D lattices produce sampling on a 2-D grid or reciprocal lattice

Example 2: Non-orthogonal 2-D lattice

Effect of 2-D Crystal Lattice on Transform (Transform Sampling)

2×2 crystal

$\mathrm{S}^{\prime \prime \prime} \mathrm{S}^{\prime \prime \prime \prime}$

Effect of 2-D Crystal Lattice on Transform (Transform Sampling)

2×2 crystal

Effect of 2-D Crystal Lattice on Transform (Transform Sampling)

4×2 crystal

Effect of 2-D Crystal Lattice on Transform (Transform Sampling)

4×4 crystal

Effect of 2-D Crystal Lattice on Transform (Transform Sampling)

8×4 crystal

NWW\% w"w w"w

Effect of 2-D Crystal Lattice on Transform (Transform Sampling)

8×8 crystal

" N"W"W"W" "N"M'N"M" "M"M"M"M

Effect of 2-D Crystal Lattice on Transform (Transform Sampling)

16×8 crystal

Effect of 2-D Crystal Lattice on Transform (Transform Sampling)

16×8 crystal

III.C. 6 Diffraction
 III.C.6.g Convolution and Multiplication

If the phase and amplitude (structure factor) at each point $h k$ in the 2-D reciprocal lattice can be obtained, the crystal and motif structures can be solved by mathematical Fourier synthesis (inverse Fourier transformation)

Diffraction Pattern of N Wide Slits
 (Fourier Transform and Convolution Relationships)

Diffraction Pattern of N Wide Slits

(Fourier Transform and Convolution Relationships)

III.C CRYSTALS, SYMMETRY AND DIFFRACTION

 III.C. 6 Diffraction
KEY CONCEPTS:

- Fourier transform
- Fourier Synthesis and Analysis
- Image formation is a double diffraction process
- Bragg's Law
- Structure factor and Argand diagram
- Convolution and multiplication

III.C. 6 Diffraction
 III.C.6.h Other Properties of FTs and Diffraction Patterns

1) Analogy between OD and "Mathematical" FTs
2) Asymmetric / Symmetric Objects / Transforms
3) Reciprocity
4) Resolution
5) Sharpness of Diffraction Spots
6) Geometry, Intensity and Symmetry
7) Projection Theorem
8) Friedel's Law

III.C. 6 Diffraction

III.C.6.h Other Properties of FTs and Diffraction Patterns Analogy between OD and "Mathematical" FTs

Optical bench is an excellent device for demonstrating properties of Fourier transforms and diffraction patterns

III.C. 6 Diffraction

III.C.6.h Other Properties of FTs and Diffraction Patterns

 Analogy between OD and "Mathematical" FTs

Optical Diffraction:

- Incident radiation is laser beam
- Diffraction grating (object) is transparency (e.g. EM micrograph) or mask

III.C. 6 Diffraction
 III.C.6.h Other Properties of FTs and Diffraction Patterns Asymmetric vs. Symmetric Objects and Their Transforms

Simple, symmetric structures \Rightarrow simple, symmetric transforms

Asymmetric structures \Rightarrow complex transforms

Transforms are like fingerprints:

- Specific object features often give rise to characteristic features in the transform

Simple Objects and Their Transforms

Single Slit

Slit Transform

FT

$\frac{\sin (x)}{x}$

Simple Objects and Their Transforms

Single Slit

$\frac{\sin (x)}{x}$

Simple Objects and Their Transforms

Single Slit

$\frac{\sin (x)}{x}$

Simple Objects and Their Transforms

Single Slit

$\frac{\mathrm{FT}}{}$

$\frac{\sin (x)}{x}$

Simple Objects and Their Transforms

Simple Objects and Their Transforms

Rectangle
16×512

Rectangle Transform

FT

Simple Objects and Their Transforms

Rectangle

Rectangle Transform
16×256

FT

Simple Objects and Their Transforms

Rectangle

Rectangle Transform

16×128
I

Simple Objects and Their Transforms

Rectangle

Rectangle Transform
16×64

Simple Objects and Their Transforms

Rectangle

Rectangle Transform

Simple Objects and Their Transforms

"Rectangle"
"Rectangle" Transform

Simple Objects and Their Transforms

Rectangle

Rectangle Transform
32×16

Simple Objects and Their Transforms

Rectangle

Rectangle Transform

Simple Objects and Their Transforms

Circle

Square

Circle Transform

Square Transform

Simple Objects and Their Transforms

Square

Square Transform

Simple Objects and Their Transforms

Circle

III.C. 6 Diffraction
 III.C.6.h Other Properties of FTs and Diffraction Patterns Asymmetric vs. Symmetric Objects and Their Transforms

Simple, symmetric structures \Rightarrow simple, symmetric transforms

Asymmetric structures \Rightarrow complex transforms

Transforms are like fingerprints:

- Specific object features often give rise to characteristic features in the transform

Asymmetric Objects and Their Transforms

Objects with Cyclic Symmetry and Their Transforms

Objects with Cyclic Symmetry and Their Transforms

Objects with Cyclic Symmetry and Their Transforms

Objects with Cyclic Symmetry and Their Transforms

Objects with Cyclic Symmetry and Their Transforms
Cols

Objects with Cyclic Symmetry and Their Transforms

C_{1}		
	$\mathrm{M}^{\prime \prime}$	$2 x$
		0.03

III.C. 6 Diffraction

III.C.6.h Other Properties of FTs and Diffraction Patterns Asymmetric vs. Symmetric Objects and Their Transforms

Structure can be regenerated by back transformation ONLY if the amplitudes and phases at ALL points of the FT are available

May be accomplished for:
Visible light (optical reconstruction)
Electrons (electron microscopy)
Can only be achieved by mathematical computation for:
X-rays and neutrons (phases indirectly measured)
Simple inspection of most transforms does NOT directly lead to a unique determination of structure

III.C. 6 Diffraction

III.C.6.h Other Properties of FTs and Diffraction Patterns Reciprocity

Dimensions in object (real space) are inversely related to dimensions in the transform (reciprocal space)

III.C. 6 Diffraction

III.C.6.h Other Properties of FTs and Diffraction Patterns Reciprocity

Small spacings in object - represented by features spaced far apart in reciprocal space

III.C. 6 Diffraction

III.C.6.h Other Properties of FTs and Diffraction Patterns Resolution

Outer regions of FT arise from fine (high resolution) details in the object

Coarse (low resolution) object features contribute near the central region of the FT

III.C. 6 Diffraction
 III.C.6.h Other Properties of FTs and Diffraction Patterns

Resolution

Low-pass/High-pass filtering

Low-pass: low-resolution features (near center of transform) are allowed to "pass" through filter and interfere (resynthesize) at image plane while high resolution features are removed

High-pass: low resolution Fourier components are removed
(i.e. blocked by filter) while high resolution Fourier components are allowed to "pass" through filter and form an image (leads to accentuation of high resolution features such as edges)

Fourier Transform Filtering

$$
\begin{aligned}
& \frac{20}{92} \\
& \hdashline .16
\end{aligned}
$$

III.C. 6 Diffraction
 III.C.6.h Other Properties of FTs and Diffraction Patterns Sharpness of Diffraction Spots

Features in the diffraction pattern become sharper as the number of diffracting objects or the distance between them increases

Sharpening reflects a situation of more complete, destructive interference away from the reciprocal lattice positions

Transform Sampling

Diffraction patterns of one, three, nine and 8 number of slits

$$
-\frac{2 \pi}{\frac{2 \pi}{k X_{0}}}
$$

Sharpening of Diffraction Features

III.C. 6 Diffraction
 III.C.6.h Other Properties of FTs and Diffraction Patterns

1) Analogy between OD and "Mathematical" FTs
2) Asymmetric / Symmetric Objects / Transforms
3) Reciprocity
4) Resolution
5) Sharpness of Diffraction Spots
6) Geometry, Intensity and Symmetry
7) Projection Theorem
8) Friedel's Law
III.C. 6 Diffraction
III.C.6.h Other Properties of FTs and Diffraction Patterns

Transforms are like fingerprints

Asymmetric structures \Rightarrow complex transforms

Simple, symmetric structures \Rightarrow simple, symmetric transforms

Simple inspection of most transforms does NOT directly lead to a unique determination of structure

III.C. 6 Diffraction

III.C.6.h Other Properties of FTs and Diffraction Patterns Reciprocity

Dimensions in object (real space) are inversely related to dimensions in the transform (reciprocal space)

Fourier Transform Filtering

III.C. 6 Diffraction
 III.C.6.h Other Properties of FTs and Diffraction Patterns Sharpness of Diffraction Spots

Features in the diffraction pattern become sharper as the number of diffracting objects or the distance between them increases

Sharpening reflects a situation of more complete, destructive interference away from the reciprocal lattice positions

III.C. 6 Diffraction
 III.C.6.h Other Properties of FTs and Diffraction Patterns

Geometry, Intensity and Symmetry

Geometry and spacings of the crystal and reciprocal lattices obey a reciprocal relationship

$$
d^{*}=\frac{K}{d \sin \gamma^{*}}
$$

and $\gamma^{*}=180-\gamma$

d = unit cell spacing (a or b)
$d^{*}=$ reciprocal lattice spacing (a^{*} or b^{*})
$\gamma=$ angle between unit cell axes
$\gamma^{*}=$ angle between reciprocal lattice axes
$K=$ constant of diffraction ($=\lambda L$)
$\lambda=$ wavelength of monochromatic radiation
$L=$ camera length (distance from specimen to diffraction plane)
III.C.6.h Other Properties of FTs and Diffraction Patterns Geometry, Intensity and Symmetry

$$
d^{*}=\frac{K}{d \sin \gamma^{*}} \quad \gamma^{*}=180-\gamma
$$

Real Lattice

III.C.6.h Other Properties of FTs and Diffraction Patterns Geometry, Intensity and Symmetry

$$
d^{*}=\frac{K}{d \sin \gamma^{*}} \quad \gamma^{*}=180-\gamma
$$

Real Lattice
Reciprocal Lattice

III.C.6.h Other Properties of FTs and Diffraction Patterns Geometry, Intensity and Symmetry

The reciprocal lattice edges, of dimensions a^{*} and b^{*}, are respectively perpendicular to the cell edges b and a

Real Lattice
Reciprocal Lattice

III.C.6.h Other Properties of FTs and Diffraction Patterns

 Geometry, Intensity and SymmetryEach spot is indexed according to its position in the reciprocal lattice, and is considered to arise by diffraction from a set of density (Bragg) planes/lines in the 3-D/2-D crystal

Motif structure, NOT spacings or geometry of crystal lattice, determine the intensity distribution in transform

Spacings and geometry of crystal lattice only determine where the motif transform is sampled

III.C.6.h Other Properties of FTs and Diffraction Patterns

 Geometry, Intensity and SymmetryStructural symmetry produces symmetrical intensity distributions in the transform (aside from Friedel symmetry)

One of major reasons why OD is powerful method for diagnosing presence of symmetry in biological specimens

III.C.6.h Other Properties of FTs and Diffraction Patterns Geometry, Intensity and Symmetry

Screw-axis symmetry in a crystal produces systematic absences in the transforms

III.C.6.h Other Properties of FTs and Diffraction Patterns

 Geometry, Intensity and SymmetryFoot

Foot Transform

III.C.6.h Other Properties of FTs and Diffraction Patterns

 Geometry, Intensity and SymmetryFoot p1 Crystal

Trerrererrerts rerererererer cererererereres cerererereserer crerrererere

Foot p1 Crystal Transform
mirmimem Trmomerm тrmomem

III.C.6.h Other Properties of FTs and Diffraction Patterns Geometry, Intensity and Symmetry

Foot p1 Crystal

Foot p1 Crystal Transform

III.C.6.h Other Properties of FTs and Diffraction Patterns

 Geometry, Intensity and SymmetryFoot pg Crystal

Foot pg Crystal Transform

III.C.6.h Other Properties of FTs and Diffraction Patterns Geometry, Intensity and Symmetry

Foot pg Crystal

Foot pg Crystal Transform

III.C.6.h Other Properties of FTs and Diffraction Patterns

 Geometry, Intensity and SymmetryFoot pg Crystal

Foot pg Crystal Transform

FT

III.C.6.h Other Properties of FTs and Diffraction Patterns

 Geometry, Intensity and Symmetry

III.C.6.h Other Properties of FTs and Diffraction Patterns Geometry, Intensity and Symmetry

Foot pg Crystal

Foot pg Crystal Transform

III.C.6.h Other Properties of FTs and Diffraction Patterns Geometry, Intensity and Symmetry

III.C. 6 Diffraction

III.C.6.h Other Properties of FTs and Diffraction Patterns

Projection Theorem

FT of the projected structure of a 3-D object is equivalent to a 2-D central section of the 3-D FT of the object

Central section intersects the origin of the 3-D transform and is perpendicular to the direction of projection

Basis of 3D reconstruction by Fourier methods:

- Several independent views of the projected structure are recorded and their 2-D transforms calculated to build up a complete 3-D transform
-3-D structure is reconstructed from 2-D views by inverse Fourier transformation of 3-D FT

III.C.6.h Other Properties of FTs and Diffraction Patterns Projection Theorem

(a)

(c)

(e)

(g)

Three dimensional Fourier transform

Inverse three dimensional Fourier transform

(b)

From Lake (Lipson), Fig. 14, p. 174

III.C. 6 Diffraction
 III.C.6.h Other Properties of FTs and Diffraction Patterns Friedel's Law

Diffraction pattern from the projected structure of a real object has an inversion center in the intensity distribution

Amplitude at any point in the pattern is identical at a point equidistant and opposite in direction from the transform origin: $\left|F_{h k l}\right|=\left|F_{-h,-k,-l}\right|$

Phases at these two points are opposite: $\alpha_{h k l}=-\alpha_{-h,-k,-l}$
For periodic specimens with periodic patterns consisting of discrete spots (reflections), Friedel related spots are called Friedel pairs

III.C. 6 Diffraction

III.C.6.h Other Properties of FTs and Diffraction Patterns

Friedel's Law

Friedel symmetry causes the transform of any real object to display 2 -fold symmetry in the intensity distribution

Object rotational symmetry	Transform rotational symmetry
n even	n
n odd	$2 n$

III.C. 6 Diffraction
 III.C.6.h Other Properties of FTs and Diffraction Patterns Friedel's Law

Optical diffraction:
Friedel's law generally fails (pattern does not exhibit perfect inversion symmetry in intensity distribution) because the object is a photographic transparency which causes irregular phase shifts of the incident radiation (laser light) as it passes through the emulsion and backing of the film

Mathematically computed diffraction patterns:

Should have PERFECT Friedel symmetry (if software is bug-free of course!)

