III.C CRYSTALS, SYMMETRY AND DIFFRACTION

KEY CONCEPTS:

- Biomacromolecules quite often occur naturally or in vitro as organized structures composed of subunits arranged in a symmetrical way
- Such structures readily studied by diffraction (i.e. Fourierbased) methods
- Fundamental concepts concerning crystalline matter, symmetry relationships, and diffraction theory form a basic framework for understanding the principles and practice of image processing and interpretation of structural results

III.C CRYSTALS, SYMMETRY AND DIFFRACTION

 III.C. 1 Definition of TermsRead pp.178-179 of lecture notes very carefully so you five a good grasp of the terminology

III.C CRYSTALS, SYMMETRY AND DIFFRACTION

III.C. 2 Crystals

DEFINITION: Crystal
Regular arrangement of atoms, ions, or molecules

- Conceptually built up by continuing translational repetition of some structural pattern
- Pattern (unit cell) may contain one or more molecules or a complex assembly of molecules

III.C. 2 Crystals

Unit cell (in 2D) defined by two edge lengths (a,b) and one interaxial angle (γ)

III.C. 2 Crystals

Unit cell (in 3D) defined by three edge lengths (a,b,c) and three interaxial angles (α, β, γ)

III.C. 2 Crystals

Unit cell (in 3D) defined by three edge lengths (a,b,c) and three interaxial angles (α, β, γ)

III.C CRYSTALS, SYMMETRY AND DIFFRACTION

III.C. 3 Lattices

DEFINITION: Lattice

A rule for translation
A mathematical formalism - defines an infinite array of imaginary points

- Each point in the lattice is identical to every other point

View from each point is identical with the view in the same direction from any other point (condition not obeyed at the boundary of a finite, but otherwise perfect crystal)

III.C. 3 Lattices

Crystal structure and crystal lattice NOT equivalent

- Structure is an array of objects
- Lattice is an array of imaginary, infinitely small points

2D lattice:
Defined by two translations, a, b, and two axes at an angle α to each other

3D lattice:
Defined by three translations, a, b, c, and three axes at angles α, β, γ to each other

III.C. 3 Lattices

2D or 3D crystal lattices may be:

- Primitive (P) - one lattice point per unit cell
- Body-centered (I) - two lattice points per cell
- Face-centered (F)- four lattice points per cell

Four 2D lattice systems subdivided into five 2D lattices

III.C. 3 Lattices
 The 5 2D Lattices

Rhombus

$$
a=b
$$

$$
\gamma=60^{\circ}
$$

From Eisenberg \& Crothers, Fig. 16-14, p. 786

III.C. 3 Lattices

Four 2D lattice systems subdivided into five 2D lattices

Seven 3D crystal systems correspond to the seven basic space-filling shapes that unit cells can adopt

- Subdivided into 14 Bravais lattices
- Cubic crystal system e.g. includes three Bravais lattices: P, I, and F

III.C. 3 Lattices

The 14 3D Bravais Lattices

Monoclinic

Hexagonal

From Eisenberg \& Crothers, Fig. 16-16, p. 790

III.C CRYSTALS, SYMMETRY AND DIFFRACTION

III.C. 4 Crystal Structure

Crystal structure: built by placing a motif at every lattice point DEFINITION: Motif

The object that is translated

- May be asymmetric (e.g. a single polypeptide chain)

- May be symmetric (i.e. containing two or more symmetrically arranged subunits)

III.C. 4 Crystal Structure

Crystal structure - built by placing a motif at every lattice point

III.C. 4 Crystal Structure

Crystal Structure, Crystal Lattice and Motif

All are restricted in the symmetries they can display
But: biomacromolecular assemblies themselves are not restricted

- They may display additional internal (non-crystallographic) symmetry

From this emerges the following corollary:

```
Asymmetric unit of the crystal structure may
    itself contain a symmetrical arrangement of
    identical, asymmetric molecules
```


III.C. 4 Crystal Structure

DEFINITION: Asymmetric Unit

Part of the symmetric object from which the whole is built up by repeats

The smallest unit from which the object can be generated by the symmetry operations of its point group

III.C CRYSTALS, SYMMETRY AND DIFFRACTION

 III.C. 5 SymmetryBiological objects may display symmetry about a point or along a line

DEFINITION:
An object is symmetrical if it is indistinguishable from its initial appearance when spatially manipulated (ignore boundary effects)

III.C. 5 Symmetry
III.C.5.a Symmetry Operators

Four types of symmetry operations which lead to superimposition of an object on itself:

Rotation

Translation
Reflection
Inversion
DEFINITION: Symmetry Element
Geometrical entity such as a point, line, or plane about which a symmetry operation is performed

III.C. 5 Symmetry
 III.C.5.a Symmetry Operators

Symmetry of any object is described by some combination of the symmetry operations

Biological aggregates or crystals:

- Symmetry only described by rotation and/or translation operations

Why?

Example: Protein molecules mainly consist of l-amino acids, hence, reflection or inversion symmetries are not allowed

III.C. 5 Symmetry
 III.C.5.b Asymmetric Unit

DEFINITION: Asymmetric Unit

Part of the symmetric object from which the whole is built up by repeats

The smallest unit from which the object can be generated by the symmetry operations of its point group
III.C. 5 Symmetry

III.C.5.b Asymmetric Unit

\# of ASUs may be <, =, or > \# of molecules in unit cell

If \# of ASUs = \# molecules in unit cell:

- Molecule either contains no symmetry or it contains non-crystallographic symmetry (symmetry not contained within the allowed lattice symmetries)

If \# of ASUs > \# molecules in unit cell:

- Molecules must occupy special positions and possess the appropriate symmetry element of the space group

III.C. 5 Symmetry
 III.C.5.c Point Groups

DEFINITION: Point Group

Collection of symmetry operations that define the symmetry about a point

Notation Systems:
S or Schoenflies (capital letters; mainly used by spectroscopists)
H-M or Hermann-Mauguin (explicit list of symmetry elements; preferred by crystallographers).

III.C. 5 Symmetry
III.C.5.c Point Groups

Types of Symmetry about a Point:

Rotational (n)
Mirror or Reflection (m)
Inversion (i)
Improper Rotations

III.C. 5 Symmetry
 III.C.5.c Point Groups
 Rotational Symmetry (n)

Object appears identical if rotated about an axis by $\alpha=360 / n$ degrees ($=2 \pi / n$ radians)

Only allowed n-fold axes for crystal lattices are:

$$
n=1,2,3,4, \text { and } 6
$$

Why the restriction?
Lattices must be space filling

III.C. 5 Symmetry
 III.C.5.c Point Groups
 Rotational Symmetry (n)

III.C. 5 Symmetry III.C.5.c Point Groups Mirror (Reflection) Symmetry (m)

Each point in the object is converted to an identical point by projecting through a mirror plane and extending an equal distance beyond this plane

III.C. 5 Symmetry
 III.C.5.c Point Groups
 Mirror (Reflection) Symmetry (m)

$m_{y}: x, y--->-x, y$
$m_{x}: x, y-->x,-y$

III.C. 5 Symmetry
 III.C.5.c Point Groups
 Inversion Symmetry (i)

Each point in the object is converted to an identical point by projecting through a common center and extending an equal distance beyond this center

Objects with i symmetry said to be centrosymmetric

III.C. 5 Symmetry
 III.C.5.c Point Groups Inversion Symmetry (i)

III.C. 5 Symmetry
 III.C.5.c Point Groups Improper Rotations

Rotations followed by m or i
Include:

- Rotoinversion: n followed by i
- Rotoreflection: n followed by m

Only inversion axes for crystal lattices are:

$$
\overline{\mathrm{T}}, \overline{2}, \overline{3}, \overline{4}, \overline{6}
$$

III.C. 5 Symmetry
 III.C.5.c Point Groups
 Improper Rotations

Two-fold Rotary Inversion ($\overline{2}$)

(b) two-fold rotatory-inversion axis or mirror plane

III.C. 5 Symmetry
 III.C.5.c Point Groups

Types of Point Groups

The collection of symmetry operations about a point are defined by three point groups:

Cyclic
Dihedral
Cubic

III.C. 5 Symmetry
 III.C.5.c Point Groups Types of Point Groups

Cyclic Point Groups:

- Single n-fold axis of rotation
- n can be any positive integer
- Notations:

H-M system: \boldsymbol{n}
S system: $\quad \boldsymbol{C}_{\boldsymbol{n}}$ (C stands for cyclic)

Example:

34 subunit TMV stacked disk aggregate $=C_{17}$

III.C. 5 Symmetry
 III.C.5.c Point Groups
 Cyclic Point Group Symmetry

TMV stacked disk (C_{17})

III.C. 5 Symmetry
 III.C.5.c Point Groups
 Types of Point Groups

Cyclic Point Groups (n or \boldsymbol{C}_{n}):

Non-biological molecules can also have mirror planes of symmetry either parallel or perpendicular to the n-fold axis of symmetry

Cyclic Point Groups 2 mm $3 m$

4 mm

From Bernal, pp. 45 and 47-53

III.C. 5 Symmetry
 III.C.5.c Point Groups
 Types of Point Groups

Dihedral Point Groups:

- Axes of rotation at right angles to each other
- n-fold axis perpendicular to $n 2$-fold axes
- Notations:

H-M system: n2 (odd n) or n22 (even n)
S system: $\boldsymbol{D}_{\boldsymbol{n}}$ (D stands for dihedral)

- \# ASUs for $D_{n}=2 n$

III.C. 5 Symmetry
 III.C.5.c Point Groups
 Types of Point Groups

Dihedral Point Groups (n2 or n22 or D_{n}):

- Most oligomeric enzymes display dihedral symmetry

Example:

Ribulose bisphosphate carboxylase/oxygenase (RuBisCO) has D_{4} symmetry (422 in H-M notation)
\# ASUs in the point group D_{n} is $2 n$, thus RuBisCO has eight asymmetric units

III.C. 5 Symmetry
 III.C.5.c Point Groups
 Types of Point Groups

Cubic Point Groups:

- Essential characteristic:

Four 3-fold axes arranged as the four body diagonals (lines connecting opposite corners) of a cube

- Three cubic point groups:

Group name	S notation	HM notation	\# ASU
Tetrahedral	T	23	12
Octahedral	0	432	24
Icosahedral	I	532	60

III.C. 5 Symmetry
 III.C.5.c Point Groups

 Cubic Point Groups

 Cubic Point Groups}

Tetrahedral (T, 23)
3 two-fold 4 three-fold

Octahedral (O, 432)
6 two-fold
4 three-fold 3 four-fold

Icosahedral (I, 532)
15 two-fold 10 three-fold 6 five-fold

III.C. 5 Symmetry
 III.C.5.c Point Groups
 Icosahaedral Cubic Point Group

III.C. 5 Symmetry III.C.5.c Point Groups Icosahaedral Cubic Point Group

III.C. 5 Symmetry
 III.C.5.c Point Groups
 Icosahaedral Cubic Point Group

III.C. 5 Symmetry III.C.5.c Point Groups Icosahaedral Cubic Point Group

12 pentamers

III.C. 5 Symmetry III.C.5.c Point Groups
 Icosahaedral Cubic Point Group

30 dimers

20 trimers

12 pentamers
III.C. 5 Symmetry III.C.5.c Point Groups

Lattice Restrictions and Non-Crystallographic Symmetry

- Crystal structure and crystal lattice may only contain 1-, 2-, 3-, 4-, or 6-fold rotational symmetry axes (crystal lattice must be space filling) though the motif can have additional symmetries
Example: 34 subunits in the TMV disc aggregate are arranged about a
17-fold axis of rotation (C_{17})
- TMV disc forms true 3D crystals
- Has been studied by X-ray crystallography
- Disc occupies a general position in the crystal unit cell, and therefore displays non-crystallographic symmetry

Many spherical viruses are icosahedral (cubic point group) and hence contain some symmetry elements compatible with allowed lattice symmetries, and crystallize and display crystallographic as well as non-crystallographic symmetry

III.C. 5 Symmetry
 III.C.5.d Translational Symmetry
 1) Repetition in One Dimension

Translational symmetry is symmetry along a line

DEFINITION:

Translation is symmetry operation of shifting object a given distance in a given direction

III.C. 5 Symmetry
III.C.5.d Translational Symmetry
1) Repetition in One Dimension

1-D crystal of right feet
III.C. 5 Symmetry
III.C.5.d Translational Symmetry
2) Screw Axes

A screw axis combines translation and rotation operations to produce a structure with helical symmetry

Screw axes are symmetry elements of crystals that are helices with an integral \# of ASUs per turn of the helix

DEFINITION: $\boldsymbol{n}_{\boldsymbol{m}}$ screw axis

- Rotation of $2 \pi / n$ radians about an axis followed by:
- Translation of $\boldsymbol{m} / \boldsymbol{n}$ of the repeat distance (unit cell edge)

III.C. 5 Symmetry
 III.C.5.d Translational Symmetry
 2) Screw Axes

Screw axes found in crystals:

$$
2_{1}, 3_{1}, 3_{2}, 4_{1}, 4_{2}, 4_{3}, 6_{1}, 6_{2}, 6_{3}, 6_{4} \text {, and } 6_{5}
$$

Crystal lattice only accommodates an integral \# of ASUs per turn of the helix

NOTE: above rule need not apply to helices in general

III.C. 5 Symmetry
 III.C.5.d Translational Symmetry
 2, Screw Axis Parallel to b

Screw Axis Symmetries

Screw Axis Symmetries

4_{3} on left hand
4_{3} on right hand

From Glusker \& Trueblood, Fig. 18, p. 74

Helical Symmetry (\boldsymbol{n}_{m})

16.33 subunits per turn of basic helix

From Eisenberg \& Crothers, Fig. 16-12, p. 782
III.C. 5 Symmetry

III.C.5.e Plane Groups and Space Groups

Symmetry of a structure is described by:
Plane group if it is 2D
Space group if it is 3D
All possible crystal symmetries are generated by combining all types of lattice symmetries with all types of motif symmetries

If internal structure of crystal is considered, additional symmetry exists due to the presence of screw axis and glide plane symmetries

Leads to:
17 possible 2D plane groups
230 possible 3D space groups

III.C. 5 Symmetry
 III.C.5.e Plane Groups and Space Groups

17 possible 2D plane groups 230 possible 3D space groups

With enantiomorphic biological structures:
5 possible plane groups
65 possible space groups

III.C. 5 Symmetry
 III.C.5.e Plane Groups and Space Groups

Periodic Structure

Generate by placing a motif at every point of a lattice
Lattice $=$ rule for translation
Motif = object that is translated

III.C. 5 Symmetry
 III.C.5.e Plane Groups and Space Groups

Periodic Structure

Thought of as being built up in two steps:

1. A motif is generated from the ASU by the symmetry operations of the point group
2. The structure is generated from the motif by the translational symmetry operations of the lattice

Asymmetric unit $\xrightarrow[\text { symmetry }]{\text { point-group }}$ motif $\xrightarrow[\text { symmetry }]{\text { latice }}$ structure

III.C. 5 Symmetry
 III.C.5.e Plane Groups and Space Groups
 Plane Group Symmetry P1

III.C. 5 Symmetry
 III.C.5.e Plane Groups and Space Groups

Plane Group Symmetry P2

III.C. 5 Symmetry
 III.C.5.e Plane Groups and Space Groups

 Glide Plane Symmetry

 Glide Plane Symmetry}

Translation followed by a mirror operation (or vice versa)

- Biological molecules generally do not display glide plane symmetries because they do not exist in enantiomorphic pairs
- However, biological molecules (or crystals) when viewed in two-dimensions (i.e. in projection) can display mirror symmetry

III.C. 5 Symmetry
 III.C.5.e Plane Groups and Space Groups

Glide Symmetry Operation

III.C. 5 Symmetry
 III.C.5.e Plane Groups and Space Groups

b-glide plane normal to c

[^0]From Glusker \& Trueblood, Fig. 18, p. 74

III.C. 5 Symmetry
 III.C.5.e Plane Groups and Space Groups Plane Group Symmetry Pg

III.C. 5 Symmetry
 III.C.5.e Plane Groups and Space Groups
 Plane Group Symmetry Pm

III.C. 5 Symmetry

III.C.5.f Examples of Symmetrical Biological Molecules

Helical Symmetry

Actin, actin-myosin filaments
Bacterial flagella
Bacterial pili
Chromatin fibers
Enzyme aggregates (e.g. catalase tubes)
Neurotubules
Sickle cell hemoglobin fibers
Tobacco mosaic virus (and many others)
T4 bacteriophage sheath (extended or contracted configuration)

III.C. 5 Symmetry

III.C.5.f Examples of Symmetrical Biological Molecules

Point Group Symmetry

MOLECULE/AGGREGATE	S	H-M	\# ASU
Asymmetric aggregates: e.g. ribosome	C_{1}	1	1
Fibrous molecules: e.g. fibrinogen	C_{2}	2	2
Enzymes:			
lactate dehydrogenase	D 2	222	4
catalase	D 2	222	4
aspartate transcarbamylase	D 3	32	6
ribulose bisphosphate carboxylase/oxygenase	D 4	422	8
glutamine synthetase	D 6	622	12
asparate-b-decarboxylase	T	23	12
\quad dihydrolipoyl transsuccinylase	O	432	24
Spherical viruses: e.g. polyoma, polio, rhino, tomato bushy stunt, human wart, etc.	I	532	60

III.C. 5 Symmetry
III.C.5.f Examples of Symmetrical Biological Molecules

Plane Group Symmetry (2-D Crystals)

Aquaporin
Bacterial cell walls (e.g. Bacillus brevis T layer)
Bladder luminal membrane
Gap junctions
Light harvesting complex
Purple membrane

Space Group Symmetry (3-D Crystals)

Various intracellular inclusions
Various in vitro grown crystals suitable for X-ray crystallography

[^0]: (e) b-glide plane through the origin and normal to \mathbf{c}

