Choice of accelerating voltage Choice of apertures Specimen stage/holder Choice of magnification Focusing Magnification calibration **Resolution tests** Image intensifiers/TV displays Microscope maintenance Photography

I.E.1 Choice of Accelerating Voltage

Most routine biological microscopy: 80 or 100kV

As kV is **increased** several factors are affected:

- <u>Specimen penetration</u> increases: means thicker specimens can be studied
- <u>Amplitude contrast</u> decreases (fewer elastically and inelastically scattered electrons stopped by objective aperture)
 - <u>Electron gun brightness</u> increases

I.E.1 Choice of Accelerating Voltage

Additional effects of **increased** kV:

- Efficiency of <u>screen phosphor</u> increases
- Efficiency of most photographic emulsions decreases
- Inelastic scattering decreases: thus chromatic aberration effects decrease (get better resolution) & radiation damage decreases (longer specimen lifetime)
- <u>Electron gun</u> more sensitive to vacuum quality high voltage stability decreases
- Resolution limit due to diffraction effects improves because $e^{-\lambda}$ decreases

I.E.1 Choice of Accelerating Voltage

Some Rules of Thumb:

- 80-100kV preferred for biological specimens
 Reduces radiation damage & improves resolution compared to lower kV
- Use small objective aperture and/or use staining techniques to increase specimen scattering contrast rather than a lower kV
- Turn filament current off before switching on high tension Prevents filament damage
- The higher the kV selected, the longer the gun takes to stabilize Discharges take place due to the desorption of residual column gases
- Pre-condition gun at a voltage higher than you will use TEM will be more stable at the lower kV

I.E.2 Choice of Apertures I.E.2.a Condenser Aperture

Factoids:

- Condenser aperture defines the maximum illumination aperture angle (2α) of the electron beam
- Smaller effective aperture achieved by defocusing condenser lens 2 (beam spread more widely)
 - As aperture size is reduced, beam size becomes smaller at crossover & total number of electrons ↓.

- Condenser 2 aperture defines the ∠ of illumination on specimen when C2 is focused on the specimen plane (C2 at crossover)
- When C2 strength is <u>increased</u> (*i.e.* over focused crossover above specimen plane) the angle of illumination is defined by the illumination source crossover point I_s
- C2 lens **defocusing** <u>reduces effective</u> <u>illumination aperture</u>

I.E.2 Choice of Apertures I.E.2.a Condenser Aperture

Factoids:

- <u>Small</u> apertures best for <u>high resolution</u>
 Beam will be more coherent & give better phase contrast
- Beam coherence "perfect" if radiation source is <u>infinitely</u> <u>small</u> (*i.e.* infinite distance from specimen)
 Effectively the case with smallest condenser apertures which select only a narrow band of paraxial electrons
- Another way to improve coherence:
 - Over focus C1 lens
 - C2 lens aperture will collect fewer e⁻ from the smaller, demagnified source

I.E.2 Choice of Apertures I.E.2.b Objective Aperture

Factoids:

- Used to improve scattering contrast
- Sizes range from ~ 10 to 75 μ m (40-50 typical size used)
- The **smaller** the aperture the > the contrast
- Smaller apertures **improve** resolution limited by **spherical** and **chromatic** aberration but **reduce** resolution limited by **diffraction**
- Smaller apertures <u>harder to align</u>, <u>keep aligned</u> & <u>more sensitive</u> to contamination
- Ultra-thin, **self-cleaning** apertures eliminate many problems caused by contamination

Scattered electrons heat aperture edge high enough to prevent the formation of contamination

I.E.3 Specimen Stage/Holder Some Rules of Thumb:

- Never use bare hands to handle specimen holder tip
- Specimen grid must be flat & secure in holder for proper thermal contact

A bent grid can change the specimen height (.:. magnification) May need to change course objective focus to get good image

- Specimen inserted into the microscope with:

Filament turned off

High voltage on

Gun and condenser apertures aligned

Magnification at a **low setting** suitable for locating good specimen

I.E.4 Choice of Magnification

Choice of which magnification to use depends on the nature of the experiments being performed

Several criteria used to establish a suitable magnification level

I.E.4 Choice of Magnification I.E.4.a Low Magnification

- Low magnification (<10,000X) required to record a large field of view from a specimen in a single micrograph
- Montage: splicing together prints from several low magnification micrographs
 - If very low magnifications used, pincushion and barrel distortions could be significant & the prints won't line up.

I.E.4 Choice of Magnification I.E.4.b Statistical Studies

For statistical studies (particle counting) use the **lowest** magnification at which the particles can be correctly identified.

I.E.4 Choice of Magnification I.E.4.c Radiation Damage

With radiation sensitive specimens use the **lowest** possible magnification & illumination level when searching for a suitable specimen area

High magnification required to achieve highest resolution images

Excessive magnification leads to unnecessary radiation damage because higher doses are needed to suitably expose the photographic emulsion

Resolution of photographic medium ultimately determines the **maximum** magnification needed to record details at a *predetermined* resolution

Photographic emulsions can resolve image details at least as small as 20 µm

The **theoretical potential** resolution of object details depends on image magnification according to:

Potential resolution = 20 µm/magnification

Best potential resolution = 20 µm/magnification

Magnification	Potential Resolution at Object (nm)
2,000	10.0
20,000	1.0
50,000	0.4
100,000	0.2

"Typical" microscopy performed at **excessive** magnifications given the <u>limited resolution of the specimens</u> (especially biological)

- Photographic magnification (usually <10x) does not increase image resolution
- Only makes it possible for the eye to resolve details
- Use of unnecessarily high magnification restricts specimen <u>field of view</u>

Rule of Thumb:

- Select **lowest** magnification consistent with required resolution
 - Each time magnification is doubled, a 4-fold increase in beam intensity is required at the specimen to expose a micrograph

I.E.5 Focusing

- Image focusing affected by making small changes in objective lens current
- True or near focus: condition at which no Fresnel fringe is formed at an image point
- Slight degree of underfocusing gives optimum results

Scattering contrast is **enhanced** with interference contrast at slight underfocus

I.E.5 Focusing I.E.5.a Low Magnification Focusing (< 15,000X)

Focusing with a Wobbler Aid

- Wobbler produces a cyclical deflection of the incident beam
- Causes image movement when the objective lens is focused on a plane <u>above or below</u> the specimen
 - Image appears sharpest when objective lens is focused <u>on</u> the specimen plane

I.E.5 Focusing I.E.5.a Low Magnification Focusing (< 15,000X)

Focusing with a Wobbler Aid

I.E.5 Focusing I.E.5.a Low Magnification Focusing (< 15,000X)

Minimum Contrast Method

- Withdraw objective aperture and set the objective lens strength to give an image with minimum contrast
- Reinsert objective aperture before photography
- Works best with thin specimens because they show a dramatic drop in contrast near the in-focus position
- Not the most effective or recommended way to focus!

I.E.5 Focusing I.E.5.b High Magnification Focusing (usually > 30,000X)

- Focus on background support film

"Structure" mainly due to phase contrast

- Best NOT to focus directly on the specimen, especially if it is a new and unfamiliar one

Support film well-defined, well-behaved "specimen" with a characteristic appearance at near focus settings

 Consider phase contrast granularity when interpreting pictures taken at high resolution

Granularity erroneously misinterpreted as genuine fine structure in the specimen Record a through-focal series I.E.5 Focusing I.E.5.b High Magnification Focusing (usually > 30,000X)

Rules of Thumb:

1. The greater the level of magnification, the more accurate the focusing must be

2. High contrast does **NOT** mean you have achieved a "sharp focus" condition

Through focus series of identical area of a thin carbon film lightly shadowed with platinum

-2.1 µm

-1.4 µm

-0.7 µm

near focus

0.7 µm

1.4 µm

Phase contrast effects on image of mitochondrial outer membrane in thin section

a) Under focusb) Close to focusc) Slightly over focusedd) Over focused

Hole in a thin carbon film

Under focus

Near focus

Over focus

From Agar, Fig. 4.11, p. 137

Hole in a thin carbon film

Under focus

Hole in a thin carbon film

Near focus

From Agar, Fig. 4.11, p. 137

Hole in a thin carbon film

Over focus

From Agar, Fig. 4.11, p. 137

I.E.5 Focusing I.E.5.b High Magnification Stigmating

'Line drawing' method of objective lens stigmating

Specimen: Pt-Ir on carbon substrate

- a) Astigmatic lens, underfocused. Astigmatic lines run N-S
- b) Same area, slight overfocused.
 Astigmatic lines run E-W at 90° to (a)
- c) Same area at 'jump-over point' of best focus with the astigmatic lens
- d) Same area at best focus with astigmatism corrected to better than 10 Å.

I.E.6 Magnification Calibration

- Because of **hysteresis**, actual lens strength depends on whether the current arrives at a given value from a higher or lower value
- Nominal magnification settings in modern TEMs may have an uncertainty of ~ 2-5% or more
- Most TEM have a means to normalize magnification by cycling the lenses in a standard way to improve reproducibility to ~ 2% or better
- Essential to have an **independent** magnification calibration
- A given calibration is only valid for the specimen holder being used
- Magnification is calibrated with reference specimens with known dimensions or spacings

I.E.6 Magnification Calibration I.E.6.a Polystyrene Latex Spheres

- Polystyrene latex spheres of uniform size
- Good internal calibration standards
- Add to & photograph with a specimen sample
 - Accurate to 5-10% or better if a large number are measured in the absence of contamination

I.E.6 Magnification Calibration I.E.6.b Diffraction Grating Replicas

Replica of Cross-ruled Diffraction Grating (2160 lines/mm)

Convenient for low magnification calibrations (5-20,000X)

From Agar, Fig. 5.9, p. 162

I.E.6 Magnification Calibration I.E.6.b Diffraction Grating Replicas

Magnification calibration with a shadowed diffraction grating replica

A square grating (2,160 lines/mm) taken at nominal instrumental magnifications of:

(a) 3,000
(b) 5,000
(c) 10,000
(d) 20,000
(e) 30,000
(f) 60,000

I.E.6 Magnification Calibration I.E.6.c Crystalline Specimens with Known Lattice Spacings

Internal calibration standards for biological specimens examined at medium to high magnification.

- Beef liver catalase (8.75 x 6.85 nm spacings)
- Tobacco mosaic virus (2.3 nm axial spacing)
- T4 bacteriophage tails (3.9 nm axial spacing)

I.E.6 Magnification Calibration I.E.6.c Crystalline Specimens with Known Lattice Spacings Beef live catalase crystal negatively-stained with ammonium molybdate

Spacing between lines: 8.75 nm Periodicity along lines: 3.43 nm Nominal magnification ~150,000X

From Agar, Fig. 5.10, p. 163

I.E.6 Magnification Calibration I.E.6.d Very High Magnification

Crystal Lattice Plane Resolution Measurement

- At very high magnification (>100,000X), a number of calibration standards are useful
 - a) Cu-phthalocyanine with **0.98** and **1.26 nm** lattice spacings
 - b) K-chloroplatinate with **0.699 nm** spacing. Very susceptible to beam damage
 - c) Pt-phthalocyanine crystal with **1.25 nm** lattice spacing.

I.E.6 Magnification Calibration Cautionary Notes:

Measurements of spacings in micrographs should be made directly from the micrograph and NOT from a photographic enlargement

- Enlarger may introduce distortions
 - <u>Photographic papers can shrink or stretch</u> with time

I.E.7 Resolution Tests

Recall: Resolving power of the microscope = best possible performance as limited by built-in instrumental parameters.

Record micrographs of a suitable test specimen & then measure the actual resolution achieved in the image I.E.7 Resolution Tests I.E.7.a Point Separation Test

- Photographic image of small particles is searched for two particles which can just be distinguished as separate
- Distance between centers defines the resolution
- Two successive photographs at same focal setting are needed and the same particles must be located on both micrographs to ensure electron noise is negligible
 - Several pairs of particles in different orientations are needed to demonstrate that astigmatism or other image defects are insignificant

I.E.7 Resolution Tests I.E.7.a Point Separation Test Point Separation Resolution Measurement

Specimen: platinum-iridium on carbon substrate

Pairs of particles show spacings of < 1.0 mm (at the overall magnification of ~ 2,000,000X indicates resolving power of better than 5 Å

Two micrographs must be recorded to ensure that random phase granularity is not measured by mistake for actual particles

I.E.7 Resolution Tests I.E.7.b Lattice Resolution Test

Specimen: suitably-oriented thin crystal with accurately known lattice spacings (*e.g.* from X-ray data)

 Best to use a specimen that has lattice planes oriented in more than one direction

 Partially graphitized carbon black: has lattice planes (0.34 nm) that curve in many directions within a small region

I.E.7 Resolution Tests I.E.7.b Lattice Resolution Test

Crystal lattice spacings in (a) graphite and (b) gold foil. Graphite lattice spacing = 3.4 Å. Gold lattice spacing = 2.04 Å. Magnification in book ~2,500,000X.

I.E.7 Resolution Tests I.E.7.b Lattice Resolution Test

- Lattice line test generally regarded as **stability test** rather than a guide to the performance with other specimens
- Particle separation & lattice plane resolution provide complementary information about TEM performance
- Resolution of point objects poorer than lattice planes partly due to the greater ease of identifying rows of molecules in a crystal compared to separate points in a random structure
- Contrast in crystal images mainly from interference (phase) effects
- Contrast in images of point objects primarily a scattering (amplitude) effect

I.E.7 Resolution Tests I.E.7.c Fresnel Fringe Test

Visualization of the overfocused Fresnel fringe at the edges of a hole in a thin carbon film provides a **convenient check** of TEM performance

Measure the width of finest Fresnel fringe still visible around the entire circumference of a hole in the specimen

I.E.7 Resolution Tests I.E.7.c Fresnel Fringe Test

Micrograph of hole in a carbon film with deliberately introduced astigmatism

Resolving power = difference between the d1 & d2 distances

The difference of 1.0 mm at a magnification of 500,000X indicates **2 nm** instrument resolving power

End of Sec.I.E.7