PHOTON ENERGY: E = hv (joules)

 $h = Planck's constant (6.624x10^{-34} joule-sec)$

v =frequency (cycles/sec)

ELECTRON WAVELENGTH (nms): $\lambda = h/mv$

- $m = \text{electron mass (9.11x10^{-28} g)}$
- v = electron velocity

$$\mathbf{I} = \frac{1.23}{\sqrt{V}} nm$$

V = accelerating potential (volts)

$$I = \frac{1.23}{\sqrt{V + 10^{-6}V^2}}$$
 with relativistic correction

RESOLUTION

Diffraction Effect (Rayleigh criteria): $d_d = 0.61 \lambda / n \cdot \sin \alpha$

- λ = wavelength of the radiation
- n = refractive index of the media between object and lens
- α = semi-angular aperture of the lens

Spherical Aberration Limit: $d_s = C_s \alpha^3/2$

- $C_{\rm S}$ = spherical aberration coefficient of the lens
- α = semi-angular aperture of the lens

Chromatic Aberration Limit: $d_{CV} = C_C \cdot \alpha_O \cdot \Delta V / V$ or $d_{CI} = 2C_C \cdot \alpha_O \cdot \Delta I / I$

- d_{CV} = separation of two object points which are just resolved, considering voltage
- d_{Ci} = separation of two object points which are just resolved, considering current
- $C_{\rm C}$ = chromatic aberration coefficient of lens (usually 1-3 mm)
- α_0 = objective semi-angular aperture angle
- V = accelerating potential
- ΔV = maximum departure from V of electrons contributing to the image
- I = lens current
- $\Delta I = \text{maximum departure from } I$

Astigmatism: $d_a = (\lambda \cdot \Delta f)^{1/2}$

- λ = wavelength of electron
- Δf = maximum difference in the focal length of the asymmetric lens

BASIC LAWS OF CLASSICAL GEOMETRICAL OPTICS

- 1. Rectilinear propagation of light in medium of constant refractive index (n).
- 2. Law of reflection: i = r (i = angle of incidence; r = angle of reflection)
- 3. Law of refraction (Snell's Law): $sin(i)/sin(r) = n_2/n_1$
- 4. Independence of rays (Assume light rays travel independently).

LENS FORMULA (THIN LENS EQUATION): 1/f = 1/o + 1/i

- f = focal length of the thin lens (same on both surfaces)
- *o* = distance of object from lens (positive to the left)
- i = distance of image from the lens (positive to the right)

MAGNETIC FIELD INDUCED BY A CURRENT

The **right hand rule** states that the thumb points in the direction of **current flow** and fingers curl in the direction of the magnetic field (toward N pole).

MAGNETIC FLUX DENSITY IN A SOLENOID: $B = \mu(N \cdot I/I) = \mu H$

- μ = permeability of surrounding material
- H = magnetic field intensity = (N I/I)
- N = number of turns of wire in the coil
- I = current strength in the wire
- I =length of the solenoid

FORCE ON A CURRENT MOVING THROUGH A MAGNETIC FIELD

Right hand rule: Middle finger points in the direction of **electron** flow, first finger points in the direction of the magnetic field and thumb points in the direction of the force on the moving electron.

MAGNETIC LENS FOCAL LENGTH: $f = KV_r/(N \cdot I)^2$

- f = focal length of the lens
- K = a constant
- $V_{\rm r}$ = the accelerating voltage, relativistically corrected
- $N \cdot I$ = number of ampere turns in the excitation coils

THERMIONIC EMISSION (Richardson's equation): I_s (amps/cm²) = $AT^2e^{-(b/T)}$

- A,b = constants determined empirically
- T = temperature

OHM'S LAW: $V = I \cdot R$

- V = voltage (volts)
- I = current (amps)
- R = resistance (ohms)

<u>DEPTH OF FIELD</u>: $D_0 = d/\tan \alpha$

- d = the minimum object spacing one hopes to resolve
- α = the semi-angular aperture of the lens.

DEPTH OF FOCUS: $D_i = M^2 d/\tan \alpha = D_0 M^2$

M = magnification of the lens (or complete lens system)

<u>CONTRAST</u>: % contrast = $100 \times |I_b - I_0| / I_b$

- $I_{\rm b}$ = intensity of background ajacent to the object point
- I_{Ω} = intensity of object point

ELECTRON SCATTERING ANGLE

Nuclear (elastic) scattering:	$\theta_{n} = Z e / V r_{n}$
Electron (inelastic) scattering:	$\theta_{e} = e/Vr_{e}$
Z = the atomic number	
z = the atomic number e = the charge of an electron	

V = the accelerating voltage

 $r_{\rm p}$ = distance of the beam electron from the atomic nucleus

 $r_{\rm e}$ = distance of the beam electron from the atom electron

GUN BRIGHTNESS: $B = \rho_c e V/kT$

- $\rho_{\rm C}$ = current density in the cathode
- e = electronic charge
- V = accelerating voltage
- $k = \text{Boltzmann's constant (8.6 x 10^{-5} eV/^{\circ}K)}$
- T = temperature

<u>PHOTOGRAPHIC EMULSIONS</u> Optical Density: $D = \log_{10}(1/T)$

- $T = I_t/I_i$ is the fraction of incident light **transmitted** by the plate or film.
- l_{i} = intensity of incident light
- $I_{\rm t}$ = intensity of transmitted light

Density vs. Exposure: $D = D_{s}(1-e^{-KE})$, where K = na

- $n = #grains/e^{-}$
- a = the area of one developed grain
- E = exposure time
- $D_{\rm S}$ = saturation density of emulsion

In the region where $D < D_S/4$, the curve is approximately linear, so $D = D_S KE$

Contrast: $\gamma = \Delta D / \Delta \log E$

With **electrons**, in the linear region of the *D* vs. *E* curve, contrast is linearly related to density (i.e. $\Delta D / \Delta \log E = 2.3D$)

Electron range in emulsions: $R = V^2/100$, where V = voltage in kV.

Granularity is proportional to $1/\sqrt{N}$, where N = the number of electrons.

Electron Noise is proportional to \sqrt{N} .

Photographic Noise Amplification is proportional to $(1+(2/n))^{1/2}$, where n = number of grains produced per quantum event.

Signal-To-Noise Ratio (S/N) is proportional to $N/\sqrt{N} = \sqrt{N}$

Detective Quantum Efficiency (DQE)

$$DQE = \frac{\left(\frac{s}{n}\right)^2}{\left(\frac{s}{n}\right)^2_{in}}$$

where S/N = visibility of a given size detail against a grainy background

- "out" = refers to the photographic image
- "in" = refers to the electron image.

ELECTRON DIFFRACTION

Bragg's Law: $n\lambda = 2d\sin\theta$

- n = integer
- λ = electron wavelength
- *d* = crystal lattice spacing between atomic planes
- θ = angle of incidence and also of reflection

Camera constant = λL , where L = **camera length** (usually expressed in mm)

Determination of lattice spacings, *d*, **from electron diffraction:** $D = L \tan(2\theta)$

D = distance measured from center of diffraction pattern to spot or circular ring arising from diffraction from a set of lattice planes of spacing, *d*.

Since, for small θ tan(2 θ) = 2 θ = sin(2 θ),

- $D = 2L\theta$, and from Bragg's law for small θ ,
- $2\theta = n \lambda d$, thus, $d = n \lambda L/D$

STEREO MICROSCOPY: $sin(\theta/2) = P/2tM$

- θ = full angle of tilt between stereo pairs
- P = parallax
- t = specimen thickness
- M = magnification

METAL SHADOWING

Metal thickness: $w = m/4\pi R^2$

- w = mass per unit area deposited
- m = total mass evaporated
- R = distance of the specimen from the source

Metal shadowing length: $h = l \tan \theta$

- h = height of feature casting the shadow
- θ = angle of shadowing
- / = length of shadow